Revision as of 07:11, 7 October 2024 edit171.22.78.173 (talk) -- Draft creation using the WP:Article wizard -- | Revision as of 07:17, 7 October 2024 edit undo171.22.78.173 (talk) Submitting using AfC-submit-wizardNext edit → | ||
Line 1: | Line 1: | ||
{{Short description|polymer chemistry}} | |||
{{Draft topics|technology|chemistry|physics}} | |||
{{AfC topic|stem}} | |||
{{AfC submission|||ts=20241007071718|u=171.22.78.173|ns=118}} | |||
{{AfC submission|t||ts=20241007070841|u=171.22.78.173|ns=118|demo=}}<!-- Important, do not remove this line before article has been created. --> | {{AfC submission|t||ts=20241007070841|u=171.22.78.173|ns=118|demo=}}<!-- Important, do not remove this line before article has been created. --> | ||
Revision as of 07:17, 7 October 2024
polymer chemistryReview waiting, please be patient.
This may take 8 weeks or more, since drafts are reviewed in no specific order. There are 1,860 pending submissions waiting for review.
Where to get help
You can also browse Misplaced Pages:Featured articles and Misplaced Pages:Good articles to find examples of Misplaced Pages's best writing on topics similar to your proposed article. Improving your odds of a speedy reviewTo improve your odds of a faster review, tag your draft with relevant WikiProject tags using the button below. This will let reviewers know a new draft has been submitted in their area of interest. For instance, if you wrote about a female astronomer, you would want to add the Biography, Astronomy, and Women scientists tags. Add tags to your draft Editor resources
Reviewer tools
|
Thiyl Radical Addition-Fragmentation Chain Transfer (SRAFT) Polymerization is a method within the broader category of reversible-deactivation radical polymerization (RDRP). This technique specifically targets the control of thiyl radical propagation, which has historically been challenging due to the unique properties of thiyl radicals.
Key Aspects of SRAFT Polymerization:
1. Thiyl Radical Control: SRAFT polymerization is designed to control the propagation of thiyl radicals using allyl sulfides as chain transfer agents. These agents enable the reversible deactivation of the thiyl radicals, allowing for precise control over the polymerization process, which is crucial for synthesizing polymers with well-defined architectures.
2. Allyl Sulfides as Chain Transfer Agents: In this method, allyl sulfides serve as the key component in reversibly deactivating the thiyl radicals. This reversible deactivation allows for the controlled growth of the polymer chains, akin to other RDRP techniques but tailored to the unique challenges posed by thiyl radicals.
3. Polymerization Outcomes: The SRAFT method demonstrates a linear relationship between molecular weight and monomer conversion, high chain-end fidelity, and effective chain extension, indicating good control over the polymerization process.
4. Density Functional Theory (DFT) Insights: DFT calculations in this research provide a deeper understanding of the reversible deactivation capabilities of allyl sulfides, further supporting the effectiveness of the SRAFT process.
Significance:
This innovative approach opens up new avenues in controlled polymerization, particularly in the realm of thiyl radical chemistry. The development of SRAFT polymerization represents a significant advancement in the ability to create well-defined polymer architectures using challenging radical species.
This method holds promise for the discovery and development of new controlled polymerization techniques that leverage the unique properties of thiyl radicals, potentially leading to novel materials with specialized functions.
References
Categories: