Misplaced Pages

Perimeter of an ellipse: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 20:19, 16 December 2024 editChaotic Enby (talk | contribs)Autopatrolled, Extended confirmed users, Page movers, New page reviewers, Pending changes reviewers, Rollbackers30,130 edits added Category:Conic sections using HotCat← Previous edit Revision as of 06:12, 19 December 2024 edit undoWikiCleanerBot (talk | contribs)Bots926,203 editsm v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation)Tag: WPCleanerNext edit →
Line 4: Line 4:


== Mathematical background == == Mathematical background ==
An ellipse is defined by two axes: the major axis (the longest diameter, <math>a</math>) and the minor axis (the shortest diameter, <math>b</math>). The exact perimeter <math>P</math> of an ellipse is given by the integral<ref>{{Cite journal |last=Chandrupatla & Osler |first=Tirupathi & Thomas |date=2010 |title=The Perimeter of an Ellipse |url=http://web.tecnico.ulisboa.pt/~mcasquilho/compute/com/,ellips/PerimeterOfEllipse.pdf |journal=Math Scientist}}</ref>: An ellipse is defined by two axes: the major axis (the longest diameter, <math>a</math>) and the minor axis (the shortest diameter, <math>b</math>). The exact perimeter <math>P</math> of an ellipse is given by the integral:<ref>{{Cite journal |last=Chandrupatla & Osler |first=Tirupathi & Thomas |date=2010 |title=The Perimeter of an Ellipse |url=http://web.tecnico.ulisboa.pt/~mcasquilho/compute/com/,ellips/PerimeterOfEllipse.pdf |journal=Math Scientist}}</ref>


<math>P=4a\int_{0}^{\frac{\pi}{2}} \sqrt{1-e^2sin^2\theta}\ d\theta</math> <math>P=4a\int_{0}^{\frac{\pi}{2}} \sqrt{1-e^2sin^2\theta}\ d\theta</math>
Line 24: Line 24:


=== Ramanujan's approximations === === Ramanujan's approximations ===
Indian mathematician ] proposed multiple approximations<ref>{{Cite journal |last=Villarino |first=Mark B. |date=February 1, 2008 |title=Ramanujan's Perimeter of an Ellipse |url=https://arxiv.org/pdf/math.CA/0506384 |journal=Escuela de Matemática, Universidad de Costa Rica}}</ref>: Indian mathematician ] proposed multiple approximations:<ref>{{Cite journal |last=Villarino |first=Mark B. |date=February 1, 2008 |title=Ramanujan's Perimeter of an Ellipse |url=https://arxiv.org/pdf/math.CA/0506384 |journal=Escuela de Matemática, Universidad de Costa Rica}}</ref>


'''First Approximation:''' '''First Approximation:'''

Revision as of 06:12, 19 December 2024

An ellipse has two axes and two foci
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Perimeter of an ellipse" – news · newspapers · books · scholar · JSTOR (December 2024) (Learn how and when to remove this message)

Unlike most other elementary shapes, such as the circle and square, there is no algebraic equation to determine the perimeter of an ellipse. Throughout history, a large number of equations for approximations and estimates have been made for the perimeter of an ellipse.

Mathematical background

An ellipse is defined by two axes: the major axis (the longest diameter, a {\displaystyle a} ) and the minor axis (the shortest diameter, b {\displaystyle b} ). The exact perimeter P {\displaystyle P} of an ellipse is given by the integral:

P = 4 a 0 π 2 1 e 2 s i n 2 θ   d θ {\displaystyle P=4a\int _{0}^{\frac {\pi }{2}}{\sqrt {1-e^{2}sin^{2}\theta }}\ d\theta }

where e {\displaystyle e} is the eccentricity of the ellipse, defined as e = 1 b 2 a 2 {\displaystyle e={\sqrt {1-{\frac {b^{2}}{a^{2}}}}}}

The integral used to find the area does not have a closed-form solution in terms of elementary functions. Another solution for the perimeter, this time using infinite sums, is:

P = 2 a π ( 1 i = 1 2 i ! 2 2 i × i ! × e 2 i 2 i 1 ) {\displaystyle P=2a\pi (1-\sum _{i=1}^{\infty }{\frac {2i!^{2}}{2^{i}\times i!}}\times {\frac {e^{2i}}{2i-1}})}

Approximations

Because the exact computation involves elliptic integrals, several approximations have been developed over time.

Ramanujan's approximations

Indian mathematician Srinivasa Ramanujan proposed multiple approximations:

First Approximation:

P π ( 3 ( a + b ) ( 3 a + b ) ( a + 3 b ) ) {\displaystyle P\approx \pi (3(a+b)-{\sqrt {(3a+b)(a+3b)}})}

Second Approximation:

P π ( a + b ) ( 1 + 3 h 10 + 4 3 h ) {\displaystyle P\approx \pi (a+b)(1+{\frac {3h}{10+{\sqrt {4-3h}}}})}

where h = ( a b ) 2 ( a + b ) 2 {\displaystyle h={\frac {(a-b)^{2}}{(a+b)^{2}}}}

Simple arithmetic-geometric mean approximation

P 2 π a 2 + b 2 2 {\displaystyle P\approx 2\pi {\sqrt {\frac {a^{2}+b^{2}}{2}}}}

This formula is simpler than most perimeter formulas but less accurate for highly eccentric ellipses.

Approximations made from programs

In more recent years, computer programs have been used to find and calculate more precise approximations of the perimeter of an ellipse. In an online video about the perimeter of an ellipse, recreational mathematician and YouTuber Matt Parker, using a computer program, calculated numerous approximations for the perimeter of an ellipse. Approximations Parker found include:

P π ( 6 a 5 + 3 b 4 ) {\displaystyle P\approx \pi ({\frac {6a}{5}}+{\frac {3b}{4}})}

P π ( 53 a 3 + 717 b 35 269 a 2 + 667 a b + 371 b 2 ) {\displaystyle P\approx \pi ({\frac {53a}{3}}+{\frac {717b}{35}}-{\sqrt {269a^{2}+667ab+371b^{2}}})}

References

  1. Chandrupatla & Osler, Tirupathi & Thomas (2010). "The Perimeter of an Ellipse" (PDF). Math Scientist.
  2. Abbott, Paul. "On the Perimeter of an Ellipse" (PDF). The Mathematical Journal: 2.
  3. Villarino, Mark B. (February 1, 2008). "Ramanujan's Perimeter of an Ellipse". Escuela de Matemática, Universidad de Costa Rica.
  4. Stand-up Maths (2020-09-05). Why is there no equation for the perimeter of an ellipse‽. Retrieved 2024-12-16 – via YouTube.

See also

Category: