Misplaced Pages

Talk:Big Bang: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 13:44, 9 June 2007 editJammerocker (talk | contribs)91 edits section added← Previous edit Revision as of 13:45, 9 June 2007 edit undoJammerocker (talk | contribs)91 edits maybe we should have a 2 sections addedNext edit →
Line 607: Line 607:
#1 flaws of the big bang theory and #2. good points of the big bang theory, it would make it so that people can form their own opinions.] 13:38, 9 June 2007 (UTC) #1 flaws of the big bang theory and #2. good points of the big bang theory, it would make it so that people can form their own opinions.] 13:38, 9 June 2007 (UTC)


:ok my bad someone already did it but there is one thing that i saw that wasnt there...listen to this. "ok there is this theory...i forgot the name but I'm trying to find it now, anyway...the theory states that if anything implodes while spinning, every single piece will move at the exact same rate of speed and spin at the exact same speed, now if this little molecuel imploded then how can the matter from it colide and make earth?" i just thought maybe we could add that to the problem section :ok my bad someone already did it but there is one thing that i saw that wasnt there...listen to this. "ok there is this theory...i forgot the name but I'm trying to find it now, anyway...the theory states that if anything implodes while spinning, every single piece will move at the exact same rate of speed and spin at the exact same speed, now if this little molecuel imploded then how can the matter from it colide and make earth?" i just thought maybe we could add that to the problem section.] 13:45, 9 June 2007 (UTC)

Revision as of 13:45, 9 June 2007

Skip to table of contents
This is the talk page for discussing improvements to the Big Bang article.
This is not a forum for general discussion of the article's subject.
Article policies
Find sources: Google (books · news · scholar · free images · WP refs· FENS · JSTOR · TWL
Archives: Index, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Featured articleBig Bang is a featured article; it (or a previous version of it) has been identified as one of the best articles produced by the Misplaced Pages community. Even so, if you can update or improve it, please do so.
Main Page trophyThis article appeared on Misplaced Pages's Main Page as Today's featured article on February 23, 2005.
Article milestones
DateProcessResult
January 31, 2005Peer reviewReviewed
February 4, 2005Featured article candidatePromoted
August 22, 2005Featured article reviewKept
May 31, 2007Featured article reviewKept
Current status: Featured article

Template:WP1.0

This article has not yet been rated on Misplaced Pages's content assessment scale.
It is of interest to the following WikiProjects:
Please add the quality rating to the {{WikiProject banner shell}} template instead of this project banner. See WP:PIQA for details.
WikiProject iconAstronomy
WikiProject iconThis article is within the scope of WikiProject Astronomy, which collaborates on articles related to Astronomy on Misplaced Pages.AstronomyWikipedia:WikiProject AstronomyTemplate:WikiProject AstronomyAstronomy
???This article has not yet received a rating on the project's importance scale.
Warning
IMPORTANT: This is not the place to discuss how you think the universe began. This page is for discussing the article, which is about the Big Bang model, and about what has been presented in peer-reviewed scientific literature about it. See Misplaced Pages:No original research and Misplaced Pages:Talk page guidelines. If you wish to discuss or debate the validity of the Big Bang please do so at BAUT forum or talk.origins.

Template:TrollWarning

Archiving icon
Archives

Index 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
11, 12, 13, 14, 15, 16, 17, 18, 19, 20
21, 22, 23, 24, 25



Factual review (per FA bid)

This article is very close to my day job, so I may be a very picky commentator. For sure it gives a good overview of the Big Bang and obviously represents a lot of hard work. Still, it seems to me to contain numerous half-truths, ambiguities and minor factual errors. Here is an edited list:

  • Lead description of the "initial state" is weaseling and misleading; a natural reading would suggest a finite density at the singularity. As a "key premise" this needs a better explanation. "Alpha-beta-gamma theory": it's not so called: Big bang nucleosynthesis (BBN) is current. A-B-G was a famous first attempt, but its answer is radically wrong.
  • History Give more dates; name Vesto Slipher, he deserves credit. Use "static" not "steady-state" for Einstein's model. Per footnote, vs. text: Lemaitre's primeval atom was 1931, his 1927 theory didn't start with a big bang. Hubble's 1929 contribution is described twice; it should emphasise that Hubble contributed the distances and used Slipher's redshifts. BB is contrasted twice with Einstein's model. Milne & Tolman appear out of sequence, they published in the 1930s, cf Steady state proposed 1950. Mention radio source & quasar count controversy (convinced many of BB prior to CMB discovery). In fact WP needs an article on evolution of the universe.
  • Overview needs to point out that the earliest phases are speculative (see comment on inflation below). Sentence on production of Quark-Gluon plasma not needed, breaks up story. Needs more dates (not just "later.."): eg age of universe at hadron formation, e-/e+ annihilation. Discussion of Dark energy suggests wrongly we'd expect linear v/z relation otherwise; also signature is slower velocities at large distances than expected by extrapolation from now.
  • Underpinning Copernican principle is implied by cosmological principle, not independent. Can't fathom in what way S-Z "tests" the cop. principle. Tests of parameter variability can't be naively extrapolated back to t=0, they may vary faster in the early universe. The FRW metric is kinematic, i.e. based on Reimann geometry but not Einstein's dynamic theory. I wouldn't say the metric "relies" on a coord chart, that's just one way of expressing the metric. The idea that "space expands" is perpetually debated; its not clear that there is a real difference from true motion. It's far from clear that the Hubble expansion tries to "pull apart" bound systems like solar systems, especially if embedded in a larger bound system like the local group. I don't understand the comment that the BB corresponds to a finite interval of conformal time... possible confusion with finite interval of comoving space on a conformal diagram?
  • Evidence The "three pillars" is very 1970's... nowadays there are many more, e.g. cluster masses, ages of oldest stars, etc. Hubble's law: why do descriptions of this always go on about the easy bit (getting v from z) and never discuss Hubble's actual contribution (getting D)? The formula is misleading as it is true for present-day velocities, not for velocities as measured on the light cone (anyway at high redshift (1+z) is expansion factor, not directly related to v). CMB photons are produced later than baryogenesis on any definition; individual photons retain their identity from a few days after the BB, when true emission mechanisms freeze out (see 3K by Partridge), subsequent Compton scattering is not an emission process. I'd like to see recombination distinguished from decoupling: photons remain well coupled until almost all electrons recombine. Somehow COBE's most famous result (detecting fluctuations) is omitted, as is the Nobel to Smoot & Mather. Discussion of Omega=0.3 is ahistorical as clear evidence for flatness didn't turn up until the Boomerang & Maxima results in 2000. Discussion of nucleosynthesis brushes a mess under the carpet, of 4 tests, D agrees with WMAP, He-3 has lousy errors, He-4 formally disagrees, and Li-7 radically disagrees. These can be explained away but it's not a big success.
  • Issues & problems Inflation is not regarded as firmly established by most cosmologists; it is just the most plausible hypothesis. Otherwise why are NASA & ESA contemplating hugely expensive space probes (see Beyond Einstein program) to see if it's true? Description of inflation implies it violates Hubble's law; not so! Also description involving horizon is too compressed to avoid misunderstandings (e.g. there are several different horizon concepts). Flatness comment uses "geometry" instead of "curvature", confusing local geometry with topology (see shape of the universe). The flatness tuning is bogus since infinitely good tuning at t=0 is required by the FRW assumption; much better to emphasise the oldness problem. AFAIK the monopole problem is outdated since GUTs consistent with modern particle physics limits don't produce monopoles in worrying quantities. Discussion of lab CPT test is out of place; this is not a serious candidate for baryogenesis. Dark matter: the universe (now) is far more lumpy than expected w/o DM. Or, the early universe (CMB fluctuations) should have been lumpier than observed to get to present state without DM. The implications of the bullet cluster for alternatives to DM (e.g. TeVeS) are still being assessed. Give it a couple of years. Dark energy the wrong idea that CMB obs. established flatness in the 1990's resurfaces. It's worth emphasising that the Omega values change radically with time & are quoted for present day.
  • Future Star formation is not suppressed by cosmic expansion but by running out of interstellar gas within each galaxy. On the other hand further galaxy formation has already been suppressed, pretty much. For almost all theories, protons decay long before astrophysical black holes evaporate.
  • Beyond the big bang Might discuss before the big bang, if latter is defined as state of very high density and temperature in thermal equilibrium. Several theories discussed here do imply that the BB was an event in the history of a larger universe, not the beginning; this should be made clear.
  • Religion Worth saying that Fred Hoyle frequently claimed that the big bang was religiously motivated. It didn't help that Georges Lemaitre was a Jesuit priest.

PaddyLeahy 20:54, 30 April 2007 (UTC)

Hey, an interesting list. I agree with much of what you're saying, but not all (more on this below). But, um, maybe you could consider actually doing the edits? Otherwise it just seems a little inefficient to list things that you feel should be changed here, and then wait for other people to implement the suggestions that you've made (be bold).
As I said, I agree with the bulk of what you're saying. I'm sorry to focus on the negatives, but here are some examples where I don't think you're on the mark;
  • Lead "...a natural reading would suggest a finite density at the singularity" not sure what you mean here, but maybe you meant infinite density?
Nope, lead asserts a finite ("tremendous") density for the initial state... begs the question, what is the initial state (if not the singularity)?
  • Underpinning
    • "The FRW metric is kinematic, i.e. based on Reimann geometry but not Einstein's dynamic theory." (btw, I think you mean Riemannian geometry). Perhaps what you're trying to get at is that you only need GR to specify the differential equation satisfied by the scale factor a(t) in the FRW metric, but not the FRW metric itself. Fair enough, I don't agree that is an important point to make here. One of the assumptions of GR (which follows essentially from the equivalence principle) is that gravity should be described by a metric on spacetime, so I'm quite comfortable regarding the fact that spacetime should be described by a metric as part of Einstein's theory.
Judgement call on importance; I don't like to quote unnecessary assumptions.
    • "The idea that "space expands" is perpetually debated; its not clear that there is a real difference from true motion." Debated by whom? It's pretty well accepted. And what do you mean by "true motion" in this context?
dx/dt? There's an interesting diatribe about this on John Peacock's web site, for a start. Arguably the difference between "galaxies move" and "space expands" is just the coordinate choice.
    • "It's far from clear that the Hubble expansion tries to "pull apart" bound systems like solar systems, especially if embedded in a larger bound system like the local group." See geodesic deviation. This is a natural way to define the "force" from Hubble expansion, but it's just much smaller than the binding forces in those systems.
But this analysis ignores the space-time curvature associated with the bound system. (Which may be embedded several layers deep in systems which have already dropped out of the Hubble flow... see space-time diagrams on Ned Wright's site).
    • The conformal time issue. Whether the singularity (or whatever) is a finite conformal time to the past does depend a little bit on the assumptions you make about what goes on in the very early universe. I think the point that section's trying to make is that there are horizons in the universe (according to the model) that can be understood using conformal time.
Mea culpa, my misreading... I thought the "finite interval of conformal time" referred to the big bang itself rather than to the gap between then and now. Might be re-phrased to make it more transparent.
  • Evidence
    • "...not for velocities as measured on the light cone..." do you mean high redshift here? Or what? I'm a little confused as to your meaning. For low redshifts (z<1) the Hubble's Law formula works pretty well. Also, when Hubble proposed his law, that's the formula he used. Like other laws, it can get modified as people probe more deeply (in this case to larger z).
Yes, I mean it would be good to distinguish v(t) = HD(t) (always true) from the more messy redshift-distance formula. Lots of redshifts at z > 1 nowadays!
    • "...Discussion of nucleosynthesis brushes a mess under the carpet..." What mess? BBN is incredibly successful. There are no other explanations for the abundances of primordial elements that even come close. Also, your criticism of BBN doesn't take account of any observational systematics that could be involved in these "discrepancies."
Seems like special pleading to me: 1 success, 2 failures. Obviously there are systematics but I could think up plenty if it was D wrong and Li right. The Spite plateau (constant Li-7 in oldest stars) looks so convincing... (I'm not claiming this disproves the BB, but it is not a nice clean proof).
  • Issues and Problems I do agree that "Hubble's Law" is misused here.
    • "...confusing local geometry with topology..." Not sure I see it. Right now nothing is said about topology in the article...
To a naive reader geometry implies the full structure including topology, as the picture suggests. elliptical refers to a specific topology (in fact the one with poles of spherical geometry identified). Referring to curvature (esp with a suitable link) reduces scope for confusion.
    • "...The flatness tuning is bogus since infinitely good tuning at t=0 is required by the FRW assumption..." Nope, FRW accommodates arbitrary spatial curvature thanks to the k parameter that appears in the metric.
For any FRW universe with a big bang, however close you want the density to be to the critical density, it will be that close for some sufficiently early time. i.e. just saying Omega is very close to unity at (unspecified) early times doesn't add anything to the basic FRW assumption. OTOH saying the universe is still expanding after 10^61 Planck times does indicate fine tuning.
    • You're right about the lumpiness issue. But...
    • "...The implications of the bullet cluster for alternatives to DM (e.g. TeVeS) are still being assessed..." Yes... But for the majority of workers in the field, TeVeS is not a viable or attractive alternative to dark matter, although some people do (and of course should) work on it. I think TeVeS falls under undue weight here, though maybe a debate on alternatives could be in the dark matter article.
Respectfully disagree. MOND was attracting increasing support (e.g. from those working on galactic structure) even before Bekenstein relativised it. For instance Rees nods in the MOND direction when discussing dark matter in Just Six Numbers. Scientists like to have alternative ideas they can test against the standard picture. And the history of MOND is full of attempts to rule it out that proved to be just misunderstandings of the theory.
  • "Dark Energy"
    • "...the wrong idea that CMB obs. established flatness in the 1990's resurfaces." CMB observations were instrumental in establishing flatness. Are you taking issue with the decade? The first measurements of the location of the first peak in the CMB, which is an excellent indicator of curvature, took place in the '90s.
Yes I'm taking issue. Despite partizan claims by supporters of experiments like QMAP and TOCO, I don't think the community (I'm in it) was convinced about the first peak until the Boomerang results (early 2000, I remember it well).
    • "...that the Omega values change radically with time..." Sure, they'll be different in the future, but it'll take tens of millions of years to notice. I see this as kind of like saying that one should note that the age of the earth is quoted as the present day value.
But the context is a discussion spanning the whole history of the universe. It's obvious to the casual reader that the age of the earth changes with time, not so for Omegas.
Like I said, sorry to focus on the negatives -- I think the other things that you mentioned would make great contributions to the article and could really improve it, if you chose to edit them in. Wesino 22:16, 30 April 2007 (UTC)
So of course that's one reason I didn't edit the article directly, the other being that I don't have time to enter into revert wars on all these points esp. to dig out supporting references. PaddyLeahy 00:03, 1 May 2007 (UTC)
You obviously have some fair amount of scientific knowledge, but I suspect you haven't really thought deeply about some of the responses above (e.g., dx/dt is "true motion"??). Without getting drawn into further arguments on these points, let me just summarize what I see as the problem with some of your proposals. You're saying that we should insert claims that
  • One shouldn't assume Einstein gravity to do cosmology,
  • The Hubble flow is not due to the expansion of space,
  • BBN is wrong,
  • The universe has nontrivial topology,
  • The flatness tuning argument accepted for at least three decades (proposed by Dicke and Peebles, and used by Guth to argue for inflation) is wrong,
  • MOND is an acceptable replacement for dark matter.
These are all fringe-y positions. As someone "in the community," you should know this. It's misleading to assert that these represent consensus positions in the field, and in what's essentially an introductory article on the big bang, no less. These points are worth debating, perhaps, but these are all issues where the vast majority of the community has already come down on one side, and it isn't the side you're advocating.
It's too bad that you have the time to trash the article (as well as a lot of the standard cosmological model along the way) but not enough to try to fix things! Some of the points that you originally made were pretty good, and dealt with widely accepted physics/astronomy. I was also intrigued by some of the historical points you made, as right now the article is a little weak in that area.
But there's just no point in adding references to all kinds of fringe topics, when the basic science of the consensus model isn't well represented in the article. I'm sure you'd have to agree with that. Wesino 08:10, 1 May 2007 (UTC)

(unindent) Ho, hum. First, I'm glad you agree with a lot in my original post. I'd be very pleased if all the editors also agreed on these points but it seems a bit hopeful. It wasn't obvious to me that the points you highlight above would turn out to be particularly controversial, mainly because I was not suggesting that these should be stated as facts, just that the article should be more nuanced. But from your reaction I think it would have generated a lot of heat if I'd just boldly edited the article, so I'm glad I didn't. My take on this article (and actually many WP cosmology articles) is that there is a tendency to take the simplest model that (just about) fits the data and claim that this is the community consensus position. Working scientists like to keep a bunch of different theories in the air at once, are acutely aware of the points in "standard models" where empirical support is weak or alternative models are available, and would like these to be made clear in encyclopedia articles.

On your points above, I wasn't objecting to the use of GR, just to the statement that GR was a necessary assumption for the FRW metric. I'd rather GR was brought in as an additional assumption needed to find a(t), but I'm happy to bow to consensus if this is thought too picky. I've cited a discussion by the author of a leading postgrad textbook, Cosmological Physics which argues that the phrase "expansion of space" is misleading (and he is not a one-man band); I just asked that this phrase not be stated as gospel. For the record, I don't think that BBN is wrong, but in it's current state it is incorrect to say that the observations (except of deuterium) unambiguously agree with the BBN predictions: this disrespects the observers who came up with values that as the cited review shows, are several/many sigma off (For He-3 there is apparent agreement but huge potential systematics). In a sense this "pillar" has become less persuasive recently, because the errors are getting smaller but discrepancies are not going away (presumably due to systematics, but that's my biased position). I don't think the article should claim this as a triumphant vindication, although I totally agree with the point that even qualitative agreement is quite impressive. Non-trivial topology has been the subject of numerous observational tests and even claims that it may explain some anomalies in WMAP; no part of standard cosmology relies on the topology being simple. So, I think the article should allow interesting topology as a possibility. Dicke & Peeble's discussion of flatness/oldness revolves around how long the universe has lasted, i.e. it emphasises oldness as much as flatness. Later presentations have often cheated and the version in the current article follows those, unfortunately. On MOND/TeVeS, I was objecting to the claim that this was definitively ruled out by the bullet cluster. I do think it is sufficiently notable to deserve a mention: Bekenstein (2004) had 138 citations last time I looked, which is pretty good going for a fringe theory. It would be hard to find a working scientist who would say we shouldn't thoroughly investigate it before concluding that non-baryonic DM is the only possible explanation. PaddyLeahy 11:08, 1 May 2007 (UTC)

I think that this is too much discussion and not enough action. I agree with most, if not all, of Paddy's and Wesino's commentary: including the bits which seem to be in contradiction. I encourage Paddy to go through and make edits and the rest of us will modify as we see fit.
Two comments:
  • The SZ effect indeed tests the Copernican Principle by confirming the T_0/a relation for the CMB. If we lived in a universe which violated the Copernican Principle, we could explain our observations as being due to a Milne-type "explosion" and the CMB as being a radiation signature of it. However, if everybody sees the CMB at the same temperature for the same space-like interval, we must not be at such a preferred position.
  • The BBN gives the right abundance for hydrogen and deuterium is extremely important. This confirmation is qualitative only in the sense that it is less well-determined than other evidences (e.g. the position of the acoustic peaks in the CMB power-spectrum). Scientists tend to be overly-skeptical when talking shop for good reason, but when the day is done it is a good idea to put all your cards on the table. Paddy is right, we spend a lot of time worrying about the holes: but this has the unintended effect of causing us to dwell on them unnecessarily in summative conversations. Misplaced Pages is not a conference talk, it is supposed to be an encyclopedia. That BBN works at all is amazing and while a brief mention can be made of systematics issues, dwelling on this idea opens up cans of worms that are generally unintended. Do you know how much Eric Lerner drones on-and-on about these BBN "problems"?
--ScienceApologist 13:41, 1 May 2007 (UTC)
OK, 3 editors is a consensus. Made a start; I'll do more when I have some books handy. I'd be happy for other motivated parties to do some of the work... PaddyLeahy 19:35, 1 May 2007 (UTC)
I see SA has already started. I deliberately avoided mentioning the Planck epoch in the overview, since that is definitely in the "speculative" phase, not in the "good reasons to believe" phase. Again, I was deliberately vague when this started but for me it's when kT = 1 TeV or so, i.e. the experimentally tested range. PaddyLeahy 19:49, 1 May 2007 (UTC)
I think this is a matter of taste. The Planck epoch is when the models give contradictory predictions. After that time, the models are pretty much consistent. They may yet be proved wrong, but they are inductively sound predictions that are made. Before the Planck epoch is anybody's guess, for the most part. --ScienceApologist 20:32, 1 May 2007 (UTC)
Yes, SA is right. More editing, less arguing! I hope I haven't offended with my comments, but sometimes you feel like someone's got to make the argument, you know? In any case, I think the flurry of edits that have been going on over the last few hours have definitely improved things. Wesino 20:57, 1 May 2007 (UTC)
On the Planck epoch, I've tried to steer a middle course here, so it's mentioned but in a kind of "terra incognito" way. I wonder if there's a way to denote the lines that separate physics everyone agrees on (kT < 1 TeV) from physics people kind-of sort-of agree on but is untested (1 TeV < kT < 10 GeV) to physics where it seems like nobody has a clue (kT > 10 GeV)? Wesino 20:57, 1 May 2007 (UTC)

I'm glad for the attention to detail and nuance being discussed above, but I hope it doesn't get in the way of the big picture in this article. Don't forget the audience. Viva la balance. Cheers, Gnixon 22:51, 2 May 2007 (UTC)

Novice says

I thought robert dicke of princeton developed big bang theory but i dont see him mentioned ???

No limits

while the traditional approaches and theory includes ideas of limitations as the speed of light's being limited, in reality there are no limits.

entrainment STUDIES SHOW ENTRAINMENT occurs at speed & range of 66 - 125 light years / sec (quite large distances....) (500 light years divided by 8-15 seconds elapsed time)

a traditional approach would be matt breathing where one breathes in expanding to the outer edge limits (of all reality) and then exhales ... the anhk (or outer - to sept tillion light years "edge" and then collapses to the point / heart center)

/s/capt queeg sr

fiducial singularity, Planck epoch

In response to some questions raised by Art LaPella I've tried to fix the sentence in question (I don't know who the original author was), which before my edits ran something like:

Nonetheless, the physical models are consistent to within a tiny fraction of a second in advance of the fiducial singularity.

Part of the problem was that in advance of the singularity would have been before the Big Bang (which isn't generally discussed in the BB models, and certainly isn't a point of agreement amongst physical models!). Also I'm not sure that it's a "fiducial" singularity. True, my Merriam-Webster defines this word as "(esp. of a point or line) assumed as a fixed basis of comparison." but my understanding is that usually this word applies when you have many versions of something, but want to single out one as the basis against which others are compared. I could be wrong.

It's a tricky paragraph, though, since what you really want to say is that nobody knows what's going on in the planck epoch, and after that we make a whole lot of assumptions/guesses (though founded on QFT/GR etc) basically until BBN when you have some idea what's going on. Definitely, that paragraph can be improved. Cheers, Wesino 22:41, 2 May 2007 (UTC)

As I mentioned above in a discussion that had died off when I got to it, I think we should be very careful about discussing singularities too prominently---could be misleading to the novice reader. Gnixon 22:52, 2 May 2007 (UTC)
Hmm... Yeah, I see where you're coming from. Definitely (and especially given how looong the article is now) there's a case to be made for excising the singularity stuff. I wouldn't object myself, I think there tends to be a lot of duplication of information on Misplaced Pages so brevity is always a good idea (my POV). I guess I can kind of see pros and cons to discussing the singularities, something like --
Con: The singularity concept is confusing to novice readers, and it's not clear exactly how it fits in to the whole picture. We could just keep things simple and say something like "the bb theory assumes the universe started in a hot dense state, and then X happened," which would save space and make things easier to read. Interested readers could be referred to more detailed articles.
Pro: It's a nice, "hic sunt dracones" reminder that it isn't all worked out yet. It is an interesting (albeit almost... philosophical) point that when you run the equations of physics in one direction they eventually break down.
How do others feel about this? Wesino 23:09, 2 May 2007 (UTC)
Pro: most readers will have already heard of the idea that the Big Bang is an explosion "from a point" or some such, so it's worth mentioning to say that it ain't necessarily so. NB I think User:ScienceApologist introduced the "fiducial" word to mean that whether the singularity exists or not, we're using the nominal time of the singularity as a reference point. Personally I think this introduces more confusion than it solves. PaddyLeahy 23:14, 2 May 2007 (UTC)
I liked the way one part of the article (intro?) referred to some post-singularity time as the "initial state," just characterizing it as "hot and dense" or something, but I noticed from somewhere on this talk page that it caused confusion. It would probably be worth saying explicitly in the intro that we expect known physics to break down before that point (or before a "singularity".) I'm down with mentioning singularities if we can find an elegant way to make clear that they're considered unphysical. It would be great if this article could help dispel the common conception of an explosion from a point. Gnixon 17:37, 3 May 2007 (UTC)
Yikes! Just noticed "singularity" in the diagram at the top. That really makes me wince. Gnixon 17:40, 3 May 2007 (UTC)

NPOV, MOND and TeVeS

I'd like to open a discussion about our presentation of some alternative cosmological theories in this article. It's clear from this talk page that the case I'm going to focus on is controversial, so instead of just doing the edits, I want to put the argument out in the open.

I think we are vastly overstating the case for alternatives to dark matter in the article, which causes a conflict with NPOV and more importantly undue weight policies on Misplaced Pages.

First, an estimate of the importance of DM alternatives in the scientific community. I obtained this through searches in two databases of scholarly articles, the NASA Astrophysics Data System and the Stanford Linear Accelerator Center (SLAC) SPIRES database, both publicly available. These databases index some of the same papers, but do not overlap completely. Any paper that you publish on astronomy, astrophysics, general relativity, high-energy physics, string theory, quantum gravity, or cosmology (even if you just post to the arXiv) it will appear on one (and probably both) of these databases.

On NASA/ADS, a search for abstracts with the phrase "dark matter" returned 23,457 articles. Searching for abstracts containing "modified," "newtonian," and "dynamics" gave 550, searching for "MOND" without "modified" or "newtonian" (to avoid overcounting) gives 353, searching for "TeVeS" yields 39.

Ideally one could search for abstracts containing "tensor" "vector" and "scalar", but this gives way too much noise with articles about cosmological perturbation theory. Here are the search strings I used on the search page and the results:

 23457  "dark matter"
   550  +modified +newtonian +dynamics
   353  MOND -modified -newtonian     
    39  teves                                  

Now assuming ALL of the articles that mention MOND/TeVeS are pro (thus including titles like "Bullet Cluster Disproves MOND" in the pro camp) I get a ratio of (23457)/(550+353+39) = 24.9 dark matter articles per pro-MOND/TeVeS articles in the scholarly literature.

One can do the same thing on SPIRES with the search terms dark matter (5040) MOND (103) Modified Newtonian Dynamics (99) and TeVeS (8). This gives a weighting factor (again assuming all articles that mention MOND/TeVeS are pro) of (5040)/(103+99+8) = 24.0, similar to the number obtained above.

Now, how much weight do we give each point of view in the article? In the present revision of this article, a quick word count reveals that in the dark matter section, the explanation of the dark matter model is 178 words long, and that for MOND/TeVeS 121 words. Thus in the article the weighting ratio is something like 178/121 = 1.5.

This means that in the Misplaced Pages Big Bang article, we are giving alternatives to dark matter roughly 17 times more weight than does the scholarly literature. To bring the ratio in the article more in line with the 25-to-1 ratio in the existing scholarly literature, alternatives would warrant seven words. I suggest:

"Some scientists advocate alternatives to dark matter."

In place of the paragraph on MOND/TeVeS in the dark matter section.

Before you flame me -- Am I saying that no-one should research MOND/TeVeS/whatever? No. Am I saying that people who do are fools? Certainly not. Do I think that one shouldn't discuss alternative ideas? Not at all. Should science have an intellectual monoculture, where establishment ideas rule the roost and cannot be questioned? Definitely not.

In an introductory article, let's give similar weights to ideas as would the experts in the field. We don't have to say that scientists agree on everything, and it doesn't have to come down to word counts, but right now we are vastly overstating the case for some of these "alternative" models. Wesino 11:44, 5 May 2007 (UTC)

You are right, Wesino. Such advocacy does not belong in this particular article. Alternatives to dark matter are not even related to the subject of the Big Bang. I'm eliminating the entire discussion. --ScienceApologist 14:15, 5 May 2007 (UTC)
I concede Wesino's point about the unbalance, though his numerical data is exaggerated: TeVeS has existed for less than 3 years and the software tools to compare it to observations are far more primitive than for GR, which gives a sociological bias to the conventional theory in the current literature; moreover, the literature on Dark matter is substantial from the late 1970s on. (I would not be making this fuss if it was still just MOND, which cannot really be reconciled with the rest of physics, despite its empirical success). Contra SA, the issue is pretty important for the Big Bang since if you replace the theory of gravity the whole theory has to be re-calculated from scratch, which is exactly what a number of people (not including me) are currently doing with TeVeS. I think you'll find that most recent popular accounts of dark matter will at least mention the modified gravity option. So I have restored the mention of MOND/TeVeS but in a much briefer form. I think the current version is more or less what Wesino was hoping for. PaddyLeahy 15:15, 5 May 2007 (UTC)
I don't buy this as an argument for inclusion. While I submit that you would need to recalculate the Friedman equations and try to reconcile WMAP results if GR is wrong, this is true regardless of whether the model is MOND/TeVeS or any other outfit. What makes MOND/TeVeS notable for the dark matter page is that it is the most popular "alternative" explanation. However, this is one level of specificity removed from the Big Bang and doesn't add any information about this cosmological model to our article. If there actually was an alternative explanation that could modify Lambda-CDM to account for MOND, then we would have something to report. As it is, all we have are arguments from another (though plainly related) field of study. Therefore mention of this idea rightly belongs on the dark matter page, not on this page. --ScienceApologist 22:24, 5 May 2007 (UTC)
OK then, replaced specific refs to MOND/TeVeS with alternatives to general relativity. I'm resisting characterizing this as a set of mavericks challenging the establishment, because in fact perfectly establishment scientists are investigating TeVeS, and indeed mostly conclude that it does seem to do the generic business (lensing, structure formation, BBN, CMB). Specific cases like the bullet cluster are stronger tests because MOND has slightly fewer knobs to adjust than GR+DM. But I'm not trying push MOND (on the main article space, anyway), just explain why DM isn't 100% certain, and at the same time indicate why this would have a big impact on the Big Bang model. PaddyLeahy 00:06, 6 May 2007 (UTC)
Still not convinced. CDM is used as a matter of course by theoretical cosmologists in N-body simulations, for example. To build, from the ground-up, a new theory of gravity will require an explanation for why N-body simulations have been successful. There will have to be some sort of accounting for why the supposed "epicycles" of non-baryonic dark matter work so well today when and if an explanation of the "heliocentric" paradigm shift of the alternative GR formulation is offered. I'm not arguing that respectable scientists don't propose alternatives, only that these proposals are too initial to warrant comment on this general, summary page.
To further describe my point, please consider the section of the article on dark energy. It is rather blythely assumed there that dark energy is all but certainly a negative-pressure term associated with a cosmological-constant like variable in the Einstein Equations. Only don't tell Rocky Kolb that (wink, wink)! I'm of the opinion that we handle dark energy properly on this page: the alternatives are a level of specificity removed and lack the detail development and incorporation into neostandard theory. As an interesting aside I might add that the theoretical work with dark energy is minimal when compared to the theoretical work that takes place with dark matter (mostly dark energy allows for the right amount of dark matter in order that the Friedman Equations yield a flat universe). This is why I'm of the opinion that alternatives to GR should be excluded from our discussion of dark matter. If people are really interested to learn more about the subject, let them read about them in the dark matter article itself. To include them here is to document the (sidelined) debate in the wrong place.
--ScienceApologist 03:05, 6 May 2007 (UTC)

(un-indent) I think ScienceApologist makes some very good points here. I think the central point is that it's just too far removed from Big Bang topic itself (though possibly germane for the dark matter article, which already has a section on alternative explanations). There are separate objections that I have for TeVeS and such, but since it's not on the article page I won't bring them up. I believe that the off-topic nature of the paragraph/sentence/whatever is by itself sufficient reason to remove.

Another problem is that the premise for inclusion is that "if GR is wrong, then we have to recalculate everything." For one thing, this is evident. For another, it would be absurd to insert similar statements elsewhere in the article. (In the CMB section, caveats that electromagnetism or atomic physics is wrong, in BBN nuclear physics or thermodynamics, then predictions must be recalculated). I am making a valid slippery slope argument because there is exactly as much evidence that GR is wrong as there is that electrodynamics, thermodynamics, atomic physics, etc are wrong -- none.

One final point. The argument is repeatedly made that "respectable scientists work on TeVeS." No one has ever argued the opposite here. The bone of contention is whether cosmologists in general feel that things like TeVeS are reasonable replacements for GR+CDM in the contexts of lensing, structure formation, CMB, BBN, and the Bullet cluster. A careful reading of your previous post reveals that claim that scientists who work on TeVeS mostly conclude this is true. I would say there is a strong selection bias there -- people who work on theories generally believe they're true. But are these only five people out of 1,000? Or 900 out of 1,000? If you were to strengthen your claim to say that most cosmologists think it's a comparable or better option than CDM, that's just false. Most cosmologists do not think that TeVeS is a serious contender to CDM (maybe it will be, but right now it's not).

So based on the reasoning in the first two paragraphs, and SA's previous post, I'm going to remove the alternative gravity stuff. It's off-topic, and the interested reader will find an entire section in the dark matter article and a whole article on alternatives to general relativity. Wesino 10:20, 6 May 2007 (UTC)

Actually this discussion highlights a fundamental difference in philosophy about NPOV that I mentioned earlier. For Wesino and SA, the "default theory" should be presented as fact unless there is an alternative theory that a significant fraction of the community believe is true. My interpretation of NPOV is that if the majority of the community is not convinced "beyond reasonable doubt" that the default theory is true, then the general reader deserves to know this and have a pointer to some of the other ideas kicking around. Your attitude gives the misleading impression that scientists are much more sure than they really are, it denies the reader relevant links (it took me a while to find the alternatives to GR article... a naive reader would not think of looking), and your conditions for mentioning rival theories will almost never arise in a mature science: I can't imagine that it will ever happen that say 30% of cosmologists are full convinced by MOND and the rest reject the idea out of hand. Instead, there will be rough agreement on the (subjective) probability of MOND being right. (I'd give odds of 5-10% at this point, not that out of line with Wesino's paper count). Compare Martin Rees's comment (in Just Six Numbers) that the COBE results allowed him to increase his personal odds on the big bang scenario as a whole from 90% to 99%... can we be more certain today about DM than we were about the big bang in 1990?
To SA: why are people doing all these CDM simulations? Answer: to calculate the implications of the theory and compare the results with observations, i.e. to see if the theory is right. They wouldn't be doing this if the theory was regarded as fact. (They'll do the same with TeVeS, given time). In fact around 30 papers have been published recently on "f(R) gravity", a theory which purports to dispose of dark energy, so if I was consistent I'd advocate a mention there too. OTOH the Kolb dispute is essentially on who can do the GR maths correctly, Kolb et al or everyone else; it's not an empirical point and Kolb et al are definitely a "tiny minority" there.
To Wesino: Unlike gravity on galactic & larger scales, we do have compelling experimental and observational evidence the EM, thermodynamics, and nucleosynthesis "work" pretty much as currently understood in the conditions relevant for big bang theory. The article even mentions one caveat, about fundamental constants changing with time. It also mentions that n-body simulations actually show a couple of significant discrepancies with observations (cuspy halos & dwarf galaxies), so all is not hunky-dory with GR+DM... we must modify one or both. My point about "mainstream" scientists is that experts on cosmology and galaxy dynamics (e.g. Binney, Silk), who had nothing to do with proposing MOND or TeVeS, are now publishing papers containing detailed calculations using the theory in order to assess it (in some cases clearly with the intention of ruling it out, though they have not yet been successful in this), i.e. work is not just being done by its inventors. PaddyLeahy 21:53, 6 May 2007 (UTC)
Would not a theory, TeVeS, which adds vector and scalar fields to the tensor field of GTR be equivalent to GTR plus new matter fields (the vector field and the scalar field)? Should not the quanta of these new fields be observable particles? JRSpriggs 05:14, 7 May 2007 (UTC)
I don't claim to fully understand TeVeS, but as far as I do understand it, it seems to be a more radical revision of GR than just adding a couple of fields... and a quantized version would be at least as far off as a quantum gravity theory with GR as its low-energy limit. OTOH Saunders' biscalar version of relativistic MOND apparently does predict a class of DM particles as you suggest. PaddyLeahy 12:46, 7 May 2007 (UTC)
PaddyLeahy, you are spouting factual inaccuracies. SPIRES says that Joe Silk has published precisely two papers that cite Bekenstein's TeVeS paper (Phys. Rev. D70, (2004) 083509). Here is a link to the abstract of one, and the other. The first one concludes that MOND is not a CDM replacement. From the abstract of the second one:
... we find that the cold dark matter is strongly favoured with Bayesian probability ratio of about one in two hundred.
Hardly resounding support for anything other than CDM. And as far as I can tell, despite your claim to the contrary, Binney has never written a paper citing Bekenstein's PRD70 article. Here's the SPIRES link if you care to check for yourself. Wesino 21:18, 7 May 2007 (UTC)
What I said was that Silk & Binney have published papers applying the theory, with a critical point of view, but had failed to rule it out. Your quotes support that for Silk: "strongly favoured" is not the same as a definitive proof. Silk's other paper says that MOND works for clusters if and only if heavy neutrinos are invoked, which is agreed by MOND partisans. The papers by Binney I referred to were on MOND rather than TeVeS since they addressed problems in the non-rel regime: and . Again these highlight problems but not fatal objections. PaddyLeahy 23:05, 7 May 2007 (UTC)
MOND's agreement with galaxy rotation curves has never really been in doubt. The trouble has always been its extension to other regimes, especially to relativistic regimes and cosmological scales where it never really worked well, if at all.
Keep in mind that this was the paper cited in the context of serious people taking alternative gravity seriously, and it still clearly talks about them being disfavored.
Also, in science there are no definitive proofs, just degrees of probability. (Unless you're a sound science proponent) Anything happens with finite probability, you just wouldn't be advised to bet on it. C'mon. Wesino | t | 00:45, 8 May 2007 (UTC)

Thanks to Wesino for his sober analysis of this problem. I concur with his conclusions. --Pjacobi 12:03, 8 May 2007 (UTC)

dark matter edit

I just changed this sentence in the dark matter section --

The detection of dark matter is sensitive only to its gravitational signature...

since I wasn't clear if the assertion was that DM interacts only gravitationally, or if that's just how we've detected it thus far. Since it's free to interact in other ways besides gravity (eg, WIMPs) I thought the new version might be more accurate. Wesino 19:21, 6 May 2007 (UTC)

SZ and copernican principle

I deleted this sentence from the "Underpinnings" section. It was very unclear. SA offers an explanation above, but it seems to me that he describes a test of the big bang model as a whole (vis-a-vis one particular theory in which the CP does not hold) rather than of the Copernican principle itself. Anyway its a bit tricky because the SZ signal depends on cluster properties which are not usually independently measured. I will add a mention of tests of T/a to "observational evidence".

Also, since the underpinnings section mentions GR and had a spurious extra "assumption", I replaced this with the assumption ethat GR is right and stuck the disputed reference to alternatives in there. Maybe people will agree that this is less offensive in this context. PaddyLeahy 14:45, 7 May 2007 (UTC)

Another way to think about the SZ measurements is that they test the CP by measuring the local value of T0. That is, if observers a few Mpc "over there" measure a hotter CMB temperature (even if it obeys the correct T(a) relation) you'd see that in SZ.
I have an issue with the recent edit as it stands, since it jumps into alluding to problems with the big bang 1. before even completing the description of the theory (!!!) and, 2. without even mentioning the problems. Stylistically, the criticism of GR is in the wrong place (more on this below).
Also the edit is factually incorrect. GR is an absolutely essential element of the cosmological perturbation theory that lets you compute the CMB spectrum for l < 200 or so (eg, superhorizon scales at decoupling). So the implicit claim that it's only been tested on stellar scales is misleading.
Overall I'm very unhappy with the repeated "alternative gravity edits." I really fail to understand the POV that insists that the fact that GR is potentially wrong is an essential feature of the big bang model (despite the utter lack of evidence). Paddy, I applaud your edits in other areas, but the insistence that "alternative gravity," whose predictions are largely unknown, has made no unique predictions of its own, is not supported by the majority of cosmologists, and solves no pre-existing problem in the theory, strikes me as teach the controversy. Frankly, I think you would do well to read Will's book, then read it again, and then possibly a third time, and then start talking about the evidence for GR.
This irks me. Will's most recent book is 14 years old & therefore irrelevant for discussion of more recent theories (also way out of date on precision confirmations of GR on AU scales). You also apparently need to do some reading if you think that MOND has made no successful predictions and supplied no generic solutions of problems which need a posteriori "adjustment" with GR+DM: see the recent review by Mike Merrifield (who is not a supporter of MOND). You keep requesting a list of "supporters" of MOND as if this were about competing football teams. Cosmologists are grown-ups. Read my comment under "NPOV" etc above. PaddyLeahy 22:53, 7 May 2007 (UTC)
Beyond just waking up each morning and removing these edits (which isn't really how things are supposed to work here), and posting/reading long diatribes on this talk page, I'm not really sure what we should do to reach a resolution. Does anyone else have thoughts on this? Wesino 20:56, 7 May 2007 (UTC)
Only that this is very mild compared to the archived diatribes of years past, so we must be doing something right. Art LaPella 21:28, 7 May 2007 (UTC)
Wow, glad I wasn't around.... Wesino 21:31, 7 May 2007 (UTC)
(later) Also, I am disturbed by apparent attribution errors -- see my comment at the end of the NPOV, MOND, and TeVeS section. Unfortunately, you'll have to scroll down a bit. Wesino 21:21, 7 May 2007 (UTC)
I'll cite chapter & verse on those in a minute... PaddyLeahy 22:53, 7 May 2007 (UTC)
For the last week I've been slowly correcting the problems I originally listed on this page and have now finished, so I hope the iteration will converge soon. I have not directly reverted changes that you (Wesino) and SA agreed on even when I disagreed. Wesino, I think you are confusing the amplitude of the argument about validity of GR that is going on on this page with what the article actually says. Also, you seem to think I'm an anti-GR zealot, whereas I submit that my comments here and edits to the article clearly give high probability to GR being right (if any edits don't read that way I'm happy for you to correct the article). No-one disputes that GR must break down by the Planck epoch. It is important to emphasise this because many presentations of the Big Bang identify the singularity (hence the "beginning of time") as the key element, whereas this article quite correctly makes the case that the essence of the theory is the early hot state from which all observable consequences flow... the singularity or any pre-big bang ideas are no more than interesting speculations at the moment. No one disputes that GR is one of the major assumptions of the Big Bang model (it is referred to as an assumption numerous times in the article, not as the result of my edits). Hence why not include a sentence or two on the evidence, as for the other assumptions? You might just as well complain that there is not the slightest evidence that the laws of nature are not universal, or that the cosmological principle is wrong, so why cite these as assumptions? Wesino, you keep demanding evidence that GR is wrong, whereas I want evidence that it is right before unequivocally commending it to the innocent public. No GR specialist worth their salt would cite the low-l multipole prediction as a strong test of GR; these are fitted with various cosmological parameters and several other gravity theories (yes, TeVeS is one) can also be fitted.
(sorry to intrude on your post, this just didn't fit below) Actually, the low ls are not "fitted" to GR. This is because GR has no free parameters (once you've fixed GN). GR specialists have many other tests they can point to, but this is on the largest scales.
One way we might make some progress to a resolution is for you to respond to my comments about the different philosophies we seem to be adopting... if I'm mis-characterising your position, explain yourself more clearly. PaddyLeahy 22:53, 7 May 2007 (UTC)

(unindent) I'm not sure what the business about the Planck time has to do with this, I'll just ignore it for now (hopefully without causing offense). But I'll take you up on your suggestion to clarify my position, in the hopes of reaching some kind of resolution.

I'm also unclear of what your characterization of my position actually is, but I'll welcome the chance to clarify it in the spirit of moving things forward.

  • Our main responsibility, in the Big Bang article, is to clearly explain the Big Bang model as understood by the scientific community. We should take as our reference someone who is scientifically literate, and wants to learn what scientists mean when then talk about the "big bang," and why they believe it describes our world.

From this follow some subsidary points:

  • If the "alternatives" to GR are mentioned in this article, they should be much less space than discussions of dark matter, reflecting their proportion of the extant literature on these topics. Discussions of these models should be located in an appropriate section in the article, after the BB theory has been explained clearly and fairly.
  • If mentioned, it should not be claimed that these are full alternatives to GR. As I'm sure you'll agree -- since you yourself have made statements to this effect -- no one really knows what the predictions of these alternative models are. (Both MOND and TeVeS have free functions and many unknown parameters, for example)
  • If mentioned, it should also be noted that all of the "alternative" models under anything close to serious consideration require some form of dark matter in addition to modified gravity.
  • If mentioned, in fairness to CDM should be noted that most cosmologists and astrophysicists believe that observations such as the Bullet cluster rule out modified gravity models in favor of CDM.

When you ask for evidence that GR is right, I can only point you to sources such as Will's book (despite its "age"), or for that matter any textbook on GR, where you will find any number of successful experimental predictions of GR, from the early 20 century to the recent announcements by the Gravity Probe B team. There are simply no experiments in conflict with the theory, and a great number that are completely in accord with it.

I am fully aware of the fact that nothing can ever be known "for certain," and I do appreciate your efforts to make sure that the status quo isn't calcified, and that people understand that science is in flux. But I feel that many of these "alternative gravity" edits are falsely portraying GR as a theory in crisis. They also overstate the case for the "alternatives." Even proponents of these models admit that dark matter is still required, as well as a number of other fields, interactions, free parameters, and free functions. Also GR has been tested, and passed, in vastly more settings than any of the alternatives. A fair and complete contrast of these models belongs somewhere -- but it's off-topic for the Big Bang article.

Personally, I am making an effort, however clumsy, to try an elevate this debate to something more than personal attacks. As one approach, I've gone to two primary source databases and cited statistics. I've also looked at the sources you've cited. I've also tried to engage on this talk page whenever possible instead of simply reverting.

I'm frustrated because I'm really not seeing any response to my arguments (and those of others). It's impossible to respond to an "argument by authority," for example, without getting into the details of who works where. (And shouldn't professionals be able to argue convincingly without appealing to their own authority?) For another, to the primary source statistics, there is a claim that my numbers are skewed (How? What is the opposing analysis? What ratio do you propose, and how do you get it?). There are also a number of uncited claims, and arguments by implication that a large number of respectable scientists are secretly MONDians and so on.

I'm frustrated because I have a fear that you're set on a position from which no argument will dislodge you, and a mission to make sure your PoV is known to all, despite the arguments of others and the opinions of nearly the entire scientific community. I really hope it's not the case.

I think what we need most of all here is some kind of constructive suggestions. Here's mine. How about collecting all the points about "alternative" gravity models from their present locations, and putting a bullet point in the "Speculative Physics Beyond the Big Bang" section? It wouldn't require making the text any shorter than now, and furthermore --

  • This allows a complete and uninterrupted explanation of the BB theory, while allowing for the fact that some feel alternatives are important, but in an appropriate place in the article,
  • It makes clear that these are still-controversial proposals,
  • We already talk about the possibility of GR breaking down in the SPBtBB section (thus modified gravity would fit naturally in the theme of "beyond GR" too)
  • We already talked about alternatives to GR (eg, string models -- yes these are alternatives because the EP is violated, courtesy the dilaton, and quantum gravity effects, which may modify GR)
  • In a narrow sense, when people talk about the canonical Big Bang model, they usually mean LambdaCDM+Inflation. So interpreted this way, modifying both gravity and CDM fits well here.

Of course, as is probably clear, I see no case for including "alternative gravity" suggestions in the article. However, I do understand there are other points of view regarding inclusion. Nonetheless I think that there is a strong case to be made that these do not belong in the parts of the article devoted to explaining the theory itself.

If this idea sounds good, let's go with it. Otherwise, I would welcome a clarification of your position, and especially suggestions for action. (Action that doesn't involve me talking a long walk off a short pier, that is). Wesino | t | 00:33, 8 May 2007 (UTC)

Taking your comments from the top: Mostly agree on your aim for the article, but rather than "why they believe" I'd say "How much they believe". To pick an example I hope you agree on, few would claim to be fully convinced by inflation at the moment.
Your conditions for mentioning alternates to GR require that the comment be very short and that a lot is said about it, presumably to discourage the reader from following the link. This seems a bit contradictory; I'm happy to go with short. You can always edit the article at the other end of the link if you think it's unbalanced (havn't touched it myself).
The point about successful tests of GR (which are referenced in the article) is that viable alternates give identical results in the strong-field regime (by design). The issue is the ultra-weak field regime, hence the literature debate we have both referenced. I'm not going to waste space defending MOND because it now isn't mentioned in the article and as SA pointed out it is not the only alternate theory currently under discussion in the literature. I also don't want to emphasise the personal by defending myself against charges of being unreasonable etc. I'll supply references if requested on points where the article is in dispute.
You seem to think the article contains several disputed references to alternates to GR, but I can only find one, i.e. the brief mention in "underpinnings" (I thought you were counting the edit I made to distinguish the Planck epoch from the singularity, but apparently not). If other places are in dispute, please give a list so I can see what we're talking about. As for the "underpinnings" mention, it doesn't seem to me to interrupt the flow, and seems naturally to fit in that section; it comes after the "overview" has explained the BB picture in a fairly detailed way; its very brevity suggests this is not considered a likely possibility; ie. it arguable satisfies your criteria. I'd value the input of other editors on this point.
I don't think "beyond the big bang" is the right place to put this...the name seems to imply that these are ideas which can be added to the BB picture outlined in the rest of the article without changing it significantly. (Also, I've lived long enough that I can't associate the BB purely with lambdaCDM+inflation, indeed none of those concepts seem essential to the basic idea). PaddyLeahy 10:49, 8 May 2007 (UTC)
I removed what seemed to be (perhaps unintentional) pandering to alternative gravity theories. If you look hard enough, you can find a minority-opinion alternative to just about anything in science, so why single out gravity? The existence of alternatives are not in-and-of-themselves notable enough to include in a summary article, and the fact that there are no consensus falsification tests for GR versus any alternatives means that we should stick right now to describing the status quo. Even obliquely calling GR into question is disingenuous from a summary perspective because there are many other points in cosmology which are far more debatable and yet whitewashed over simply because this is a summary general-knowledge encyclopedia article and not something published in A&AR. Unfortunately, the subtlety of identifying holes in standard theories does not translate well into mass-media publications. Take New Scientist magazine's consistent travesties in reporting as an example of how it can go very wrong. Imagine the audience for this subject: people who may have only a vague understanding of what the Big Bang theory is and carry a lot of baggage and misconceptions along for the ride. If we begin throwing around alternative gravity theories like it's our job, we'll end up obfuscating the idea rather than elucidating it. WP:WEIGHT is a policy for a reason: undue emphasis on minority opinions bogs down articles on straightforward subjects.
To put this another way, try reading a standard intro text on the Big Bang and see how often it mentions alternatives to GR. If a Frank Shu doesn't do it, why should we?
--ScienceApologist 14:11, 8 May 2007 (UTC)
As it happens I have 9 of these in my office. Excluding the one written in 1974 (pre-MOND) and the one written by Hoyle (pro-maverick), 2 mention modified gravity en passant and 5 regard dark matter as certain. I'm going to concede on this point because no other editors are supporting my position, but I would say that I think the position has changed since all these books were written. (i) A major objection to MOND has been overcome (i.e. that it has no relativistic generalisation) and (ii) strong test cases, notably the bullet cluster have become available. As I said a week ago, the jury is still out on the latter. It will be interesting to see what position the next generation of textbooks will take. PaddyLeahy 15:05, 8 May 2007 (UTC)
Indeed, this article will continue to evolve as the textbooks evolve. That's one of the beauties of Misplaced Pages. --ScienceApologist 17:44, 8 May 2007 (UTC)

theoretical underpinnings

From the FA review it seemed like one of the issues was that things got too jargony. While looking over the theoretical underpinnings it seemed like this might be a problem. Coordinate charts, conformal time, etc.

From the looks of it, it seemed like the section was just trying to explain the GR mathematical model for the BB, which would be in parallel with the article overview. I've tried to get these ideas across without the jargon getting too intense, and linked to articles that get more hard-core. Here's the diff if you'd like to peruse what I did.

I also took out the sentence that says we can't test alpha variation in the very early U.

Not sure about the use of hyphens, I'm worried about this after reading bits of the FA review. Can someone point me to the wp policy on --'s? Wesino | t | 17:57, 8 May 2007 (UTC)

Hyphen is the best Misplaced Pages hyphen guide I know of, although there seems to be little agreement on hyphens even on the Main Page, where such details are inspected more closely than they are here. Art LaPella 19:28, 8 May 2007 (UTC)
WP:DASH PaddyLeahy 21:54, 8 May 2007 (UTC)

Horizons

Big Bang#Horizons ends with "there will be future horizon as well". I almost added the word "a" before "future". Then I wondered why it's "will be". The horizon is a region of space that exists now; its definition is what depends on the future. Similarly, in the previous sentence, should "there was a past horizon" be "there is a past horizon"? Art LaPella 19:10, 8 May 2007 (UTC)

Huh, that's an interesting point. Maybe it would be better to say "spacetime has a future/past horizon," since that would reflect the fact that a horizon is a feature that depends on the whole history of the universe. Wesino | t | 19:16, 8 May 2007 (UTC)
I changed the section before seeing this discussion. I think those changes address your concerns and hope they're okay. Gnixon 20:22, 8 May 2007 (UTC)

A couple of issues the in History section -- comments invited

I'm reading through and there are a few things I'm not sure about, but which I think could stand correcting. Nothing major, just polish.

  • In "History," ...Alexander Friedmann, a Russian and Soviet cosmologist and mathematician,... There seem to be too many ands. Could we eliminate either (and Soviet) or (Russian and) since in 1922 these were redundant? Or is there a reason that Soviet+Russian are both important?
  • Early in the History section it talks about Hubble's 1924 measurement of the distance to "spiral nebulae," then later (next paragraph) started "Since 1924" I actually edited this second sentence to strengthen the impression that he started his measurements in 1924, but which more accurate? Should we say that he painstakingly developed the distance ladder, which enabled him to announce distances to Slipher's galaxies in 1924? What's right here?
  • Later on in "History" ...the oscillatory universe (originally suggested by Friedmann, but advocated by Einstein and Richard Tolman), I know Tolman advocated this model (the reference is to the book where he discussed it) but is it true that Einstein did? I always thought that he was more of a static universe guy. Is there a reference to Einstein supporting the oscillatory universe (presumably after abandoning the static one)?

Any history buffs feel like chiming in? Wesino | t | 19:43, 8 May 2007 (UTC)

(Puts on other hat). First point no opinion (I guess the distinction is important to some Russians); second & third points are mine. Actually the only nebula measured in 1924 was Andromeda (my original text got changed) though others followed soon after; this was a Cepheid distance and Hubble used Harlow Shapley's calibration (which was in substantial error). From 1924 on Hubble pushed his distances out further and further. The Einstein ref is from Tolman's book: on oscillating models (§163) Tolman says: "The first of these models was originally considered by Friedmann as early as 1922, and has since been advocated by Einstein." The ref is "Einstein, Berl. Ber. 1931, p. 235." (which I havn't consulted). Einstein suggested various options after his original model was ruled out, e.g. also the Einstein-de Sitter model. Given that the citation in the text is to Tolman's book, you could argue this is documented already... PaddyLeahy 21:17, 8 May 2007 (UTC)
Okay, number three sounds fine to me – maybe we could include the Berl. Ber. ref, but I try not to cite things I haven't read, so I'm not sure I could do it personally! Tolman's word is fine with me. From what you say it seems number two is all right as well... For the first, I guess I'll take out "Soviet" since Russian implies Soviet in '22. Hopefully if someone has an issue they'll say something. Cheers, Wesino | t | 22:05, 8 May 2007 (UTC)
While on the subject of history, the article used to credit Gamow with the CMB prediction, but as pointed out by John Mather (The Vergy First Light) this is incorrect: the prediction was made by Gamow's student, Alpher and post-doc, Herman. I've now given the correct citation. Reading this "paper" for the first time just now was a revelation: no wonder the prediction went unnoticed, since it appears at the end of what is essentially an erratum (or correction) to Gamow's earlier Nature paper, which usually gets the credit, but doesn't actually mention that the big bang radiation would still be around today! PaddyLeahy 23:12, 8 May 2007 (UTC)

Initial state?

Last week I removed the word "initial" from the description of the early high-density state, on the grounds that the big bang concept does not depend on there being no "pre-history" to the universe. I see Gnixon has put it back in the first sentence, which seems odd, given his efforts to remove the "singularity" from the accompanying picture. One of the things that has suprised me, reading around this article, is how very few prominent cosmologists seem to have taken the "beginning of time" idea literally... not even Gamow! I guess I happened to learn about the big bang when this idea was at a high point in its fortune, a few years after the Penrose-Hawking theorem. The idea seems to be out of fashion at the moment, even though Hawking still supports it. PaddyLeahy 07:48, 9 May 2007 (UTC)

Well, I think "initial" is okay in the beginning, I think it helps distinguish the Big Bang premise that things started hot and dense and then evolved from there (as opposed to being it a hot and dense state today). I find it helps to keep things clear, maybe there's a way to get across the idea without using the word.
My feeling is that many people who work on these things these days are a little bit too enamored with the mighty S-matrix for various reasons, and grow deeply uncomfortable without an asymptotic past. Wheeler took the idea of the beginning of time seriously, and seemed to think that the fact that GR suggested this was a Big Deal. But of course, he's not really of the present generation. Wesino | t | 08:41, 9 May 2007 (UTC)
The funny thing with that discomfort is that it is entirely misplaced. Because the Hubble time is the only relevant scale in the early universe, with a finite absolute past physics still has an asymptotic history simply because of the density of the real numbers between 1 and zero. The logarithmic scale to the "beginning of time" will never reach that beginning. 10 is not zero: it is infinitely far from zero. --ScienceApologist 12:41, 9 May 2007 (UTC)
You know it's getting hairy when physicists start talking about number theory!  ;-) Paddy, I didn't mean to contradict your earlier edit. I was a little uncomfortable with "initial" for the same reason as you, but I don't really think "initial state" has to imply "beginning of time". Mostly I think that, in the lead, we should avoid getting into details at the fuzzy edge of the model. In one sense, the Big Bang does take us all the way back to t=0 (because nanoseconds << 13.7 billion years). In another sense, there's tons left to describe after GR (presumably) breaks down. Introducing things concisely and accurately is important and tricky, and we should talk about it, but I think virtually all the possibilities are at least reasonable. I made a change to the first sentence that I think sounds better and also gets rid of "initial". Hope it's an improvement. Gnixon 16:21, 9 May 2007 (UTC)
Just because nanoseconds << 13.7 billion years doesn't mean that you can compare today's timescales to the timescales in the early universe. --ScienceApologist 18:09, 9 May 2007 (UTC)
Well, I think you're taking the usefulness of the Hubble time a little too far. The Big Bang universe is 13.7 billion years old, and that means just what the casual reader thinks it does. The fact that lots of stuff happens within the first fraction of a second doesn't invalidate that statement, even if the interesting physics is spread out over a logarithmic scale. Anyway, I think we're splitting hairs and getting off-topic---I think we basically agree. The article should say that the universe is 13.7 billion years old, and it should also point out that a huge amount of interesting stuff happened at early times because the relevant physical times scale inversely with energy. Regarding "initial," I suggest we just avoid saying anything absolutist up front and then explain the details later on. Gnixon 22:01, 9 May 2007 (UTC)
This is a bit of arguing about angels dancing on pinheads, but the logarithmic nature of lookback time is often obscured in the literature because people believe that their timescales (years) can apply throughout history when they cannot. An eternal and finite universe is simultaneously possible: they need not contradict. Currently, there is no physical mechanism yet which rules out this or any other possibility. --ScienceApologist 22:16, 9 May 2007 (UTC)

ADDED: 6. A few other problems, as very important, cf.

Please help to make this section a bit better!

by wfcKehler@aol.com 84.158.89.2 20:06, 11 May 2007 (UTC)

There's already a section on "problems." I reverted those additions because they didn't fit well in the article. (My edit comment erroneously called them "uncited"; sorry.) It would be useful if a nice way could be found to incorporate them in the previous section. Gnixon 20:18, 11 May 2007 (UTC)


RESPONSE: Thanks! This is partly correctly, please add mentioned completed list for my added section (I can try to put it again better?)

6. A few other problems, cf. ], University Cambridge cited:

Despite the self-consistency and remarkable success of the standard Hot Big Bang model in describing the evolution of the universe back to only one hundredth of a second, a number of unanswered questions remain regarding the initial state of the universe.

The flatness problem Why is the matter density of the universe so close to the unstable critical value between perpetual expansion and recollapse into a Big Crunch?

The horizon problem Why does the universe look the same in all directions when it arises out of causally disconnected regions? This problem is most acute for the very smooth cosmic microwave background radiation.

The density fluctuation problem The perturbations which gravitationally collapsed to form galaxies must have been primordial in origin; from whence did they arise?

The dark matter problem Of what stuff is the Universe predominantly made? Nucleosynthesis calculations suggest that the darrk matter of the Universe does not consist of ordinary matter - neutrons and protons?

The exotic relics problem Phase transitions in the early universe inevitably give rise to topological defects, such as monopoles, and exotic particles. Why don't we see them today?

The thermal state problem Why should the universe begin in thermal equilibrium when there is no mechanism by which it can be maintained at very high temperatures.

The cosmological constant problem Why is the cosmological constant 120 decimal orders of magnitude smaller than naively expected from quantum gravity?

The singularity problem The cosmological singularity at t=0 is an infinite energy density state, so general relativity predicts its own breakdown.

The timescale problem Are independent measurements of the age of the Universe consistent using Hubble's constant and stellar lifetimes?

by wfcKehler@aol.com 84.158.89.2 20:34, 11 May 2007 (UTC)

The fact that it is hosted by Cambridge does not make it a good ref - where are the jstor paper quotes or articles in Ap J? That is the sort of ref that is needed for these types of additions. Sophia 21:52, 11 May 2007 (UTC)
Well, it's not only hosted by Cambridge (as, for example, some undergraduate's homepage), but also seems part of the official pages of their cosmology group. As such, I think it's not an unreasonable citation, although of course a published (review?) article of some sort would be better. The issues pointed out are standard, and as long as they're presented as outstanding problems and not as damning criticisms of the current model, I think they represent the current thinking of cosmologists. Perhaps the label "problem" is a little too strong. For me, the main issue is how to incorporate these points smoothly within the article. Gnixon 22:42, 11 May 2007 (UTC)

ANSWER WITH DEMAND OF REVISION: Ok, may be better to name the main section "other open problems" in order to "incorporate these points smoothly", but not to eliminate them. One incredibly relevant problem is the wellknown fact - computed, and from many other sources confirmed - of really 120 decimal orders of magnitude in difference for the needed Einstein constant as an open question. All other facts are multiply found, partly already indicated within the same article (a bit later on) and mainly already confirmed in WIKI articles like in Non-standard cosmology, Dark matter, dark energy.

See at most :

"Thus, the current standard model of cosmology, the Lambda-CDM model, includes the cosmological constant, which is measured to be on the order of 10s, or 10GeV, or 10g/cm, or about 10 in reduced Planck units." Let's try it for the last time with the needed smooth incorporation.

wfcK 84.158.88.175 22:57, 11 May 2007 (UTC)
Apologies for not making my point clearer - never edit when tired. For the record I do hold reservations about the BB model for the some of reasons they have given but I do know we won't be able to stabilise the addition unless each point is backed by some meaty link with content. I have been surprised myself how anything not conforming to the BB model has been attacked on wikipedia (note that the Non-standard cosmology article is in the category pseudophysics - there was even a long running attempt last summer to include creationist cosmologies in the article which I saw as an attempt to discredit the non-standard theories by association). So let's take it point by point and see how and where the content will best fit - but I do feel a list on a Cambridge site will not be enough to convince others of their merits. Sophia 05:35, 12 May 2007 (UTC)
I think in some cases there may be an over-reaction by editors who are concerned that Non-standard cosmology or edits like this most recent might be motivated by a religious agenda. I think WP:AGF is key. Gnixon 11:49, 12 May 2007 (UTC)
"Non-standard" is a well recognised term that does not denote "psuedo" in the physics world. The problems stated are active areas of research as these are the "missing links" for the BB. Don't get me wrong - the BB is the best explanation there is but there are still significant areas to be explained so we should be able to include some of this stuff with quality references. Sophia 13:45, 12 May 2007 (UTC)

Ok, this was our last attempt

We have experiend now as true what is written in "An Open Letter to the Scientific Community" . We could not believe it and have logged it for our proposal in BIG BANG:

Other open questions, briefly

See here below, e.g. from University Cambridge and other here named references.

The problem cosmological constant

There cited: "Thus, the current standard model of cosmology, the Lambda-CDM model, includes the cosmological constant, which is measured to be on the order of 10s, or 10GeV, or 10g/cm, or about 10 in reduced Planck units." Why is Einstein's cosmological constant 120 decimal orders(!) of magnitude smaller than naively expected from quantum gravity?

Not a big bang problem, this is a quantum gravity problem. --ScienceApologist 14:47, 12 May 2007 (UTC)
The current article says:

In the best current model of the Big Bang, dark energy is explained by the presence of a cosmological constant in the theory of General Relativity. However, the size of the constant that properly explains dark energy is surprisingly small relative to naive estimates based on ideas about quantum gravity.

Apart from the omission of numerical values, this makes the exact point mentioned (indeed, As ScienceApologist's answers below point out, all these points were already mentioned in the "Problems and features" section of the article.) PaddyLeahy 23:08, 12 May 2007 (UTC)

singularity problem

Why the necessary cosmological singularity at t=0 is an infinite energy density state, so that the general relativity predicts its own breakdown. - One probable solution: see below under "Speculative physics beyond the Big Bang".

Already discussed to death in the article and it is not a "problem" for the Big Bang -- it is a problem for theoretical quantum gravity models. --ScienceApologist 14:48, 12 May 2007 (UTC)

search of "exotic relics"

Phase transitions in the early universe inevitably give rise to topological defects, such as mentioned Magnetic monopoles and other here never experiences "exotic particles" (e.g.: Our sun is situated in our galaxy rather peripherally, but within about 100 lightyears there could not yet be measured the - for each above mentioned theory of rotating galaxies - needed dark matter). - Why don't we see or measure them here and today?

Yes, already mentioned at magnetic monopoles. --ScienceApologist 14:48, 12 May 2007 (UTC)

a probable timescale problem

Are independent measurements of the age of the Universe consistent using Hubble's constant and stellar lifetimes?

See so-called "globular cluster problem". --ScienceApologist 14:49, 12 May 2007 (UTC)

a thermal state problem

How could the universe begin in thermal equilibrium when there exist no experienced mechanism by which it can exist or be maintained at very high temperatures?

wfck for our friends and for our club 84.158.85.75 00:45, 12 May 2007 (UTC)

Horizon problem explains the resolution to this. --ScienceApologist 14:50, 12 May 2007 (UTC)
Just to be clear, there's pretty solid consensus in physics that some extension of the Big Bang model correctly describes our universe. Most of the points you've raised are recognized as outstanding problems, but are expected to be resolved by upcoming measurements that will distinguish between possible explanations. Some of the points raised look like they might be based on misunderstandings. None of them are considered a threat to the current understanding. The letter you linked to seems to imply that the Big Bang is a theory in crisis, but in fact it is extremely well-established and virtually universally accepted by cosmologists and by astronomers and physicists in general. The view of the scientists who wrote that letter represents the opinion of such a small minority that it would be undue weight to include it in this article. On the other hand, improving the article's discussion of outstanding issues and how they relate to current research would be quite useful. I don't think it's necessary to talk about "demands" and "last attempts" to make edits. Improving these articles is always sort of a back and forth effort, and it takes time. Gnixon 11:39, 12 May 2007 (UTC)

Links removed

I have removed the following links from the bottom of the page, as I don't think that they are that useful as further reading (which I have repurposed the section to be). If anyone disagrees, then please read Misplaced Pages:External links and discuss the individual links here before adding them back. If any of them are references to material in the article, then please add them back as footnotes as per the other references.

I have also removed the following, on the basis that they don't appear to actually talk about the Big Bang, but about creation/religion in general. I would have no objections to them being used as references (with specific page references) in the "Philosophical and religious interpretations" if they are appropriate there, but otherwise they don't belong in this article.

  • Leeming, David Adams, and Margaret Adams Leeming, A Dictionary of Creation Myths. Oxford University Press (1995), ISBN 0-19-510275-4.
  • Pius XII (1952), "Modern Science and the Existence of God," The Catholic Mind 49:182–192.
  • Ahmad, Mirza Tahir, Revelation, Rationality, Knowledge & Truth Islam International Publications Ltd (1987), ISBN 1-85372-640-0. The Quran and Cosmology
I've re-instated the last two as in-line cites. I think the first was intended to back up the claim that the big bang itself is considered by some as a creation myth... but that claim has been expurgated. PaddyLeahy 23:15, 16 May 2007 (UTC)

Finally, the "Preprints" section:

"Most scientific papers about cosmology are initially released as preprints on arxiv.org. They are generally technical, but sometimes have introductions in plain English. The most relevant archives, which cover experiment and theory, are the astrophysics archive, where papers closely grounded in observations are released, and the general relativity and quantum cosmology archive, which covers more speculative ground. Papers of interest to cosmologists also frequently appear on the high energy phenomenology and high energy theory archives."

Those that work in the area will already know about the ArXiV, so there's not much point linking to it for them. For newcomers, it's not the best place to start reading around the subject - going for the reviews and books would be a much better start. They will doubtless come across it in references in those reviews and books, if they go far enough. So what's the benefit of having it at the end of this article?

Thanks. Mike Peel 19:26, 16 May 2007 (UTC)

While on the topic of citations, one FARC comment is that this article is under-cited in general (e.g. now no cites in the Dark matter section at all). But this article is an introductory summary of such topics, some of which (Dark matter again) are very well referenced on their main article pages. Do we really need to provide cites on this page as well? PaddyLeahy 23:15, 16 May 2007 (UTC)
According to WP:SUMMARY, "There is no need to repeat all specific references for the subtopics in the main "Summary style" article: the "Summary style" article summarizes the content of each of the subtopics, without need to give detailed references for each of them in the main article: these detailed references can be found in the subarticles. The "Summary style" article only contains the main references that apply to that article as a whole." Mike Peel 09:37, 17 May 2007 (UTC)

Logical Nitpicker

In the introduction, there are words to the effect that at (near) time zero "energy was at high temperature and density". Matter yes but energy? I don't think so. What do we mean by the density of energy? I have tried to reword this to reflect the logical inconsistency but have been instantly stomped on by zealots who have apparently bought the article from Misplaced Pages. Any other opinions? Are we going to continue to say that energy has a temperature? Or are we going to say that matter and energy were constrained within a minute domain where temperature and density tended to infinity? Or am I the Lone Nitpicker? — Preceding unsigned comment added by Captainbeefart (talkcontribs) 13:24, 19 May 2007 (UTC)

Energy density is fine, but energy temperature is wrong (temperature is a form of energy). I've simply removed "and energy" from the sentence; just saying that matter was at a high temperature and density is fine, isn't it? Mike Peel 13:38, 19 May 2007 (UTC)
Temperature is not a form of energy. Temperature is a thermodynamic property. Energy being of high temperature is a bit mushy, but it could allude to electromagnetic radiation of high frequency. I suggest reverting the rewording as it only made matters worse. --Dschwen 14:29, 19 May 2007 (UTC)
"The temperature of a system is defined as simply the average energy of microscopic motions of a single particle in the system." I guess it is more a characterization of the kinetic energy than it is actually energy, but it still boils down to energy.
To a certain extent, having "matter and energy" is a bit of a duplication - after all, E=mc^2 (or rather, E 2 = m 2 c 4 + p 2 c 2 {\displaystyle E^{2}=m^{2}c^{4}+p^{2}c^{2}} ). How about something like "in which everything (i.e. all matter, including photons) was at an immense temperature and density"? Mike Peel 17:32, 19 May 2007 (UTC)
Photons have a temperature: T = hf/k. --ScienceApologist 14:16, 22 May 2007 (UTC)
It's awkward. Actually its the photon distribution that has the temperature but that's too picky for the lead. Why not cut out matter and energy (after all, "all the matter and energy" is the universe) and just say the universe has the temperature? PaddyLeahy 17:05, 22 May 2007 (UTC)
The tyranny of the distributions! I suppose you're one of those people who hates it when people talk about color temperatures? In any case, temperature itself is an eighteenth century abstraction invented to quantify hot and cold. It was only after statistical mechanics was fully realized that the connection between the Maxwellian, the Planckian, and thermodynamic equilibrium would be realized. These are all, however, statistical mechanics and have nothing to do with individual particles. If you truly believe that higher energy photons are not "hotter" than lower energy photons, then I guess you can complain about distributions. I, however, see no value in holding on to old macroscopic notions when dealing with individual elementary particles. (Who cares to what distribution a particular photon belongs? It still has plenty of measurable properties and follows all the known laws of physics.) In any case, this whole discussion is rather absurd because the CMB is so close to a blackbody, we might as well talk about the temperature of the universe as you suggest. --ScienceApologist 17:15, 22 May 2007 (UTC)

Being picky about these things comes with the territory...I'm marking exams at the moment. But I'd advise, if you want your students to understand thermodynamics, to keep temperature & energy carefully distinct. (And colour temp /= brightness temp /= thermodynamic temp, though all are perfectly legitimate concepts). Aren't we way off topic now? PaddyLeahy 18:55, 22 May 2007 (UTC)

Energy and temperature are indeed distinct just as the period of an orbit squared is distinct from the semi-major axis of the orbit cubed. Way off topic, indeed. --ScienceApologist 20:19, 22 May 2007 (UTC)

In the hope of resolving this, I've changed the sentence to read "Extrapolation of this expansion back in time yields a state in the distant past in which the universe was in a state of immense density and temperature." Are there any problems with this phrasing? Mike Peel 11:33, 27 May 2007 (UTC)

Cosmic egg

ScienceApologist, do you have a reference for the "cosmic egg", especially for it being different from and earlier than the 1931 "primeval atom"? I know it's mentioned at Georges Lemaitre, but without a citation there either. The most detailed account I have access to is Kragh's book, which says that a short Nature letter in 1931 is the origin of the idea of starting at (effectively) a singularity, and Lemaitre used the phrase "primeval atom" in his British Assoc talk, also written up in Nature. (My guess is that "cosmic egg" was used in private only, it would have looked very informal in the context of papers of the time). PaddyLeahy 19:50, 23 May 2007 (UTC)

I have found a number of sources which attribute the "cosmic egg" description to Lemaitre () but it may also be that "cosmic egg" phrasing may be a bit of historical revisionism. Please help research this more fully. I'll look into my sources a bit more carefully.--ScienceApologist 15:52, 28 May 2007 (UTC)
By the way, the secondary source I list above cites Bernstein, J., Feinberg, G., Eds. (1986), Cosmological Constants: Papers in Modern Cosmology, New York: Columbia University Press as a source as well as Dick Teresi's provactive book. I think that we should definitely look into this more deeply and it may help improve the cosmic egg article as well! -ScienceApologist 16:11, 28 May 2007 (UTC)

Removed paragraphs from article - citations?

I've removed the following paragraphs from the article, as they are uncited and I can't currently find references for them. If anyone else knows of a reference for them, then please add them back along with the reference.

From Hubble's law expansion:

The relation between redshift and distance is more complicated than the simple relation for velocity, for it depends on past behavior of H {\displaystyle H} and thus the detailed content (matter, dark energy etc.) of the model. Also, in practice, the proper distance between two objects at a given time is not measurable, and so the redshift–distance relation also depends on the operational definition of "distance" that is chosen. By coincidence, the redshift–luminosity distance relation for ΛCDM is reasonably linear to high redshift.

From Philosophical and religious interpretations:

Certain theistic branches of Hinduism, such as in Vaishnavism, conceive of a creation event with similarities to the Big Bang. For example in the third book of the Bhagavata Purana (primarily, chapters 10 and 26), describes a primordial state which bursts forth as the Great Vishnu glances over it, transforming into the active state of the sum-total of matter ("prakriti"). Other forms of Hinduism assert a universe without beginning or end.
Buddhism has a concept of universes that have no initial creation event, but instead go through infinitely repeated cycles of expansion, stability, destruction, and quiescence. The Big Bang may be reconciled with this view, since there are ways to conceive an eternal creation and destruction of universes within the paradigm. A number of popular Zen philosophers were intrigued, in particular, by the concept of the oscillatory universe.

maybe we should have a 2 sections added

  1. 1 flaws of the big bang theory and #2. good points of the big bang theory, it would make it so that people can form their own opinions.Jammerocker 13:38, 9 June 2007 (UTC)
ok my bad someone already did it but there is one thing that i saw that wasnt there...listen to this. "ok there is this theory...i forgot the name but I'm trying to find it now, anyway...the theory states that if anything implodes while spinning, every single piece will move at the exact same rate of speed and spin at the exact same speed, now if this little molecuel imploded then how can the matter from it colide and make earth?" i just thought maybe we could add that to the problem section.Jammerocker 13:45, 9 June 2007 (UTC)
Categories: