Revision as of 01:58, 29 August 2005 edit209.222.206.71 (talk) added link to Weibull← Previous edit | Revision as of 02:01, 29 August 2005 edit undo209.222.206.71 (talk) minor: +periodNext edit → | ||
Line 25: | Line 25: | ||
The distribution of the samples could be of the normal or exponential type. The Gumbel distribution, and similar distributions, are used in ]. | The distribution of the samples could be of the normal or exponential type. The Gumbel distribution, and similar distributions, are used in ]. | ||
In particular, the Gumbel distribution is a special case of the '''Fisher-Tippett distribution''', also known as the '''log-]''' | In particular, the Gumbel distribution is a special case of the '''Fisher-Tippett distribution''', also known as the '''log-]'''. | ||
== Properties == | == Properties == |
Revision as of 02:01, 29 August 2005
Probability density functionFile:None uploaded yet. | |||
Cumulative distribution functionFile:None uploaded yet. | |||
Parameters |
location (real) scale (real) | ||
---|---|---|---|
Support | |||
where | |||
CDF | |||
Mean | |||
Median | |||
Mode | |||
Variance | |||
Skewness | |||
Excess kurtosis | |||
Entropy |
for | ||
MGF | |||
CF |
In probability theory and statistics the Gumbel distribution is used to find the minimum (or the maximum) of a number of samples of various distributions. For example we would use it to find the maximum level of a river in a particular year if we had the list of maximum values for the past ten years. It is therefore useful in predicting the chance that an extreme earthquake, flood or other natural disaster will occur.
The distribution of the samples could be of the normal or exponential type. The Gumbel distribution, and similar distributions, are used in extreme value theory.
In particular, the Gumbel distribution is a special case of the Fisher-Tippett distribution, also known as the log-Weibull distribution.
Properties
The cumulative distribution function is
The Gumbel distribution is the case where μ = 0 and β = 1.
The median is
The mean is where = Euler's constant = 0.57721...
The standard deviation is
The mode is μ.
Parameter estimation
A more practical way of using the distribution could be
where M is the median. To fit values one could get the median straight away and then vary μ until it fits the list of values.
Generating Fisher-Tippett variates
Given a random variate U drawn from the uniform distribution in the interval (0, 1], the variate
has a Fisher-Tippett distribution with parameters μ and β. This follows from the form of the cumulative distribution function given above.