< User talk:Hayson1991
Browse history interactively ← Previous edit Next edit → Content deleted Content addedVisual Wikitext Inline
Revision as of 23:02, 23 October 2008 edit 74.183.242.181 (talk )No edit summary← Previous edit
Revision as of 23:02, 23 October 2008 edit undo 74.183.242.181 (talk ) →The way you should do it Next edit →
Line 22:
Line 22:
<math>\text{Let }u = u^2\,</math><br /><br />
<math>\text{Let }u = u^2\,</math><br /><br />
<math>\text{Let }u = 5x\,</math><br /><br />
<math>\text{Let }u = 5x\,</math><br /><br />
===The way you should do it===
<math>\text{Let }y=2\cos\left(u\right)\,</math><br /><br />
<math>\text{Let }u=v^2\,</math><br /><br />
<math>\text{Let }v=5x\,</math><br /><br />
<math>\frac{dy}{dx}=\frac{dy}{du}*\frac{du}{dv}*\frac{dv}{dx}</math><br /><br />
Find <math>\frac{dy}{dx}\,</math> then find <math>\frac{d^2y}{dx^2}\,</math> <br /><br />
Find <math>\frac{dy}{dx}\,</math> then find <math>\frac{d^2y}{dx^2}\,</math> <br /><br />
Revision as of 23:02, 23 October 2008
x
=
tan
(
y
)
{\displaystyle x=\tan \left(y\right)}
1
=
sec
2
(
y
)
∗
d
y
d
x
{\displaystyle 1=\sec ^{2}\left(y\right)*{\frac {dy}{dx}}}
(Chain rule, derivative of tan=sec^2)
1
sec
2
(
y
)
=
d
y
d
x
{\displaystyle {\frac {1}{\sec ^{2}\left(y\right)}}={\frac {dy}{dx}}}
cos
2
(
y
)
=
d
y
d
x
{\displaystyle \cos ^{2}\left(y\right)={\frac {dy}{dx}}}
d
y
d
x
=
cos
2
(
y
)
{\displaystyle {\frac {dy}{dx}}=\cos ^{2}\left(y\right)}
9~
x
2
y
+
x
y
2
=
6
{\displaystyle x^{2}y+xy^{2}=6\,}
(
2
x
∗
y
+
x
2
∗
d
y
d
x
)
+
(
1
∗
y
2
+
x
∗
2
y
d
y
d
x
)
=
0
{\displaystyle \left(2x*y+x^{2}*{\frac {dy}{dx}}\right)+\left(1*y^{2}+x*2y{\frac {dy}{dx}}\right)=0}
2
x
y
+
x
2
d
y
d
x
+
y
2
+
2
x
y
d
y
d
x
=
0
{\displaystyle 2xy+x^{2}{\frac {dy}{dx}}+y^{2}+2xy{\frac {dy}{dx}}=0}
x
2
d
y
d
x
+
2
x
y
d
y
d
x
=
−
2
x
y
−
y
2
{\displaystyle x^{2}{\frac {dy}{dx}}+2xy{\frac {dy}{dx}}=-2xy-y^{2}}
d
y
d
x
=
−
2
x
y
−
y
2
x
2
+
2
x
y
{\displaystyle {\frac {dy}{dx}}={\frac {-2xy-y^{2}}{x^{2}+2xy}}}
d
y
d
x
=
−
2
x
y
+
y
2
x
2
+
2
x
y
{\displaystyle {\frac {dy}{dx}}=-{\frac {2xy+y^{2}}{x^{2}+2xy}}}
Multiple u's
To Find dy/dx for
y
=
2
cos
(
(
5
x
)
2
)
{\displaystyle y=2\cos \left(\left(5x\right)^{2}\right)}
The way she explains it
you'll make 3 u's
Let
u
=
2
cos
(
u
)
{\displaystyle {\text{Let }}u=2\cos \left(u\right)}
Let
u
=
u
2
{\displaystyle {\text{Let }}u=u^{2}\,}
Let
u
=
5
x
{\displaystyle {\text{Let }}u=5x\,}
Find
d
y
d
x
{\displaystyle {\frac {dy}{dx}}\,}
then find
d
2
y
d
x
2
{\displaystyle {\frac {d^{2}y}{dx^{2}}}\,}
x
2
+
y
2
=
1
{\displaystyle x^{2}+y^{2}=1\,}
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑