< User talk:Hayson1991
Browse history interactively ← Previous edit Next edit → Content deleted Content addedVisual Wikitext Inline
Revision as of 03:31, 14 November 2008 edit Hayson1991 (talk | contribs )242 editsm →Clock Problem : new section← Previous edit
Revision as of 03:35, 14 November 2008 edit undo Hayson1991 (talk | contribs )242 edits →Clock Problem Next edit →
Line 45:
Line 45:
<math>\frac{d^{2}y}{dx^2} = -\frac{1}{y^3}\,</math><br /><br />
<math>\frac{d^{2}y}{dx^2} = -\frac{1}{y^3}\,</math><br /><br />
== Clock Problem ==
== Clock Problem ~ ==
===minute hand===
⚫
<math>x=4\cos\left(\frac{\pi}{2}-\frac{t \cdot \pi}{60}\right)</math><br /><br />
<math>y=4\sin\left(\frac{\pi}{2}-\frac{t \cdot \pi}{60}\right)</math><br /><br />
<math>x =5 \cos \left(\frac{\pi}{2}-\frac{t \cdot 2 \pi}{60}\right)</math><br /><br />
<math>y=5\sin\left(\frac{\pi}{2}-\frac{t \cdot 2\pi}{60}\right)</math><br /><br />
===hour hand===
⚫
<math>x=4\cos\left(\frac{\pi}{2}-\frac{t \cdot 2 \pi}{12 }\right)</math><br /><br />
<math>y=4\sin\left(\frac{\pi}{2}-\frac{t \cdot 2\pi}{12}\right)</math><br /><br />
Revision as of 03:35, 14 November 2008
x
=
tan
(
y
)
{\displaystyle x=\tan \left(y\right)}
1
=
sec
2
(
y
)
∗
d
y
d
x
{\displaystyle 1=\sec ^{2}\left(y\right)*{\frac {dy}{dx}}}
(Chain rule, derivative of tan=sec^2)
1
sec
2
(
y
)
=
d
y
d
x
{\displaystyle {\frac {1}{\sec ^{2}\left(y\right)}}={\frac {dy}{dx}}}
cos
2
(
y
)
=
d
y
d
x
{\displaystyle \cos ^{2}\left(y\right)={\frac {dy}{dx}}}
d
y
d
x
=
cos
2
(
y
)
{\displaystyle {\frac {dy}{dx}}=\cos ^{2}\left(y\right)}
9~
x
2
y
+
x
y
2
=
6
{\displaystyle x^{2}y+xy^{2}=6\,}
(
2
x
∗
y
+
x
2
∗
d
y
d
x
)
+
(
1
∗
y
2
+
x
∗
2
y
d
y
d
x
)
=
0
{\displaystyle \left(2x*y+x^{2}*{\frac {dy}{dx}}\right)+\left(1*y^{2}+x*2y{\frac {dy}{dx}}\right)=0}
2
x
y
+
x
2
d
y
d
x
+
y
2
+
2
x
y
d
y
d
x
=
0
{\displaystyle 2xy+x^{2}{\frac {dy}{dx}}+y^{2}+2xy{\frac {dy}{dx}}=0}
x
2
d
y
d
x
+
2
x
y
d
y
d
x
=
−
2
x
y
−
y
2
{\displaystyle x^{2}{\frac {dy}{dx}}+2xy{\frac {dy}{dx}}=-2xy-y^{2}}
d
y
d
x
=
−
2
x
y
−
y
2
x
2
+
2
x
y
{\displaystyle {\frac {dy}{dx}}={\frac {-2xy-y^{2}}{x^{2}+2xy}}}
d
y
d
x
=
−
2
x
y
+
y
2
x
2
+
2
x
y
{\displaystyle {\frac {dy}{dx}}=-{\frac {2xy+y^{2}}{x^{2}+2xy}}}
Multiple u's
To Find dy/dx for
y
=
2
cos
(
(
5
x
)
2
)
{\displaystyle y=2\cos \left(\left(5x\right)^{2}\right)}
The way she explains it
you'll make 3 u's
Let
u
=
2
cos
(
u
)
{\displaystyle {\text{Let }}u=2\cos \left(u\right)}
Let
u
=
u
2
{\displaystyle {\text{Let }}u=u^{2}\,}
Let
u
=
5
x
{\displaystyle {\text{Let }}u=5x\,}
Gaaah, help~~
Find
d
y
d
x
{\displaystyle {\frac {dy}{dx}}\,}
then find
d
2
y
d
x
2
{\displaystyle {\frac {d^{2}y}{dx^{2}}}\,}
x
2
+
y
2
=
1
{\displaystyle x^{2}+y^{2}=1\,}
2
x
+
2
y
d
y
d
x
=
0
{\displaystyle 2x+2y{\frac {dy}{dx}}=0\,}
Find first derivative
d
y
d
x
=
−
2
x
2
y
{\displaystyle {\frac {dy}{dx}}={\frac {-2x}{2y}}\,}
d
y
d
x
=
−
x
y
{\displaystyle {\frac {dy}{dx}}=-{\frac {x}{y}}\,}
Find second derivative
2
+
(
2
d
y
d
x
∗
d
y
d
x
+
2
y
∗
d
2
y
d
x
2
)
=
0
{\displaystyle 2+\left(2{\frac {dy}{dx}}*{\frac {dy}{dx}}+2y*{\frac {d^{2}y}{dx^{2}}}\right)=0\,}
2
(
d
y
d
x
)
2
+
2
y
d
2
y
d
x
2
=
−
2
{\displaystyle 2\left({\frac {dy}{dx}}\right)^{2}+2y{\frac {d^{2}y}{dx^{2}}}=-2\,}
2
(
−
x
y
)
2
+
2
y
d
2
y
d
x
2
=
−
2
{\displaystyle 2\left(-{\frac {x}{y}}\right)^{2}+2y{\frac {d^{2}y}{dx^{2}}}=-2\,}
2
x
2
y
2
+
2
y
d
2
y
d
x
2
=
−
2
{\displaystyle 2{\frac {x^{2}}{y^{2}}}+2y{\frac {d^{2}y}{dx^{2}}}=-2\,}
2
y
d
2
y
d
x
2
=
−
2
−
2
x
2
y
2
{\displaystyle 2y{\frac {d^{2}y}{dx^{2}}}=-2-2{\frac {x^{2}}{y^{2}}}\,}
d
2
y
d
x
2
=
−
2
−
2
x
2
y
2
2
y
{\displaystyle {\frac {d^{2}y}{dx^{2}}}={\frac {-2-2{\frac {x^{2}}{y^{2}}}}{2y}}\,}
d
2
y
d
x
2
=
−
1
y
−
x
2
y
3
{\displaystyle {\frac {d^{2}y}{dx^{2}}}=-{\frac {1}{y}}-{\frac {x^{2}}{y^{3}}}\,}
d
2
y
d
x
2
=
−
y
2
y
3
−
x
2
y
3
{\displaystyle {\frac {d^{2}y}{dx^{2}}}=-{\frac {y^{2}}{y^{3}}}-{\frac {x^{2}}{y^{3}}}\,}
d
2
y
d
x
2
=
−
y
2
+
x
2
y
3
{\displaystyle {\frac {d^{2}y}{dx^{2}}}=-{\frac {y^{2}+x^{2}}{y^{3}}}\,}
d
2
y
d
x
2
=
−
1
y
3
{\displaystyle {\frac {d^{2}y}{dx^{2}}}=-{\frac {1}{y^{3}}}\,}
Clock Problem ~
minute hand
x
=
5
cos
(
π
2
−
t
⋅
2
π
60
)
{\displaystyle x=5\cos \left({\frac {\pi }{2}}-{\frac {t\cdot 2\pi }{60}}\right)}
y
=
5
sin
(
π
2
−
t
⋅
2
π
60
)
{\displaystyle y=5\sin \left({\frac {\pi }{2}}-{\frac {t\cdot 2\pi }{60}}\right)}
hour hand
x
=
4
cos
(
π
2
−
t
⋅
2
π
12
)
{\displaystyle x=4\cos \left({\frac {\pi }{2}}-{\frac {t\cdot 2\pi }{12}}\right)}
y
=
4
sin
(
π
2
−
t
⋅
2
π
12
)
{\displaystyle y=4\sin \left({\frac {\pi }{2}}-{\frac {t\cdot 2\pi }{12}}\right)}
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑