Revision as of 16:32, 18 December 2008 view sourceTXiKiBoT (talk | contribs)567,654 editsm robot Adding: su:Laju cahaya← Previous edit | Revision as of 07:06, 23 December 2008 view source Greg L (talk | contribs)Extended confirmed users, Pending changes reviewers31,897 editsm whereas scientific articles MAY delimit numbers with narrow spaces, MOSNUM generally requires that big numbers be delimited with a comma. This is especially true for general-interest scienceNext edit → | ||
Line 40: | Line 40: | ||
| 8.3 minutes | | 8.3 minutes | ||
|} | |} | ||
The '''speed of light''' in the ] is an important ] usually denoted by the symbol ''c''<sub>0</sub> or simply ''c''. The ] is defined such that the speed of light in a vacuum is ''exactly'' |
The '''speed of light''' in the ] is an important ] usually denoted by the symbol ''c''<sub>0</sub> or simply ''c''. The ] is defined such that the speed of light in a vacuum is ''exactly'' 299,792,458 ];<ref name=si-meter>{{SIbrochure|page=112}}</ref> | ||
The speed of light is of fundamental importance in physics. It is the speed of not just visible light, but of all ], as well as ]s and anything having zero ].<ref name=Chow>{{citation | first = Tai L. | last = Chow | title = Electromagnetic theory | year = 2006 | pages = 391–92 | publisher = Jones and Bartlett | location = Sudbury MA | isbn = 0-7637-3827-1 |url=http://books.google.com/books?id=dpnpMhw1zo8C&pg=PA153&dq=isbn=0763738271&sig=PgEEBA6TQEZ5fD_AhJQ8dd7MGHo#PPR6,M1}}</ref> In ] ] the speed of light plays the crucial role of a conversion factor between space and time within ].<ref>{{citation | url = http://www.upscale.utoronto.ca/GeneralInterest/Harrison/SpecRel/SpecRel.html | title = The Special Theory of Relativity | first = David M. | last = Harrison | publisher = Department of Physics, University of Toronto | date = April 1999 | accessdate = 8 December 2008}}</ref> This theory together with the ] requires that no matter or information can travel faster than the speed of light. | The speed of light is of fundamental importance in physics. It is the speed of not just visible light, but of all ], as well as ]s and anything having zero ].<ref name=Chow>{{citation | first = Tai L. | last = Chow | title = Electromagnetic theory | year = 2006 | pages = 391–92 | publisher = Jones and Bartlett | location = Sudbury MA | isbn = 0-7637-3827-1 |url=http://books.google.com/books?id=dpnpMhw1zo8C&pg=PA153&dq=isbn=0763738271&sig=PgEEBA6TQEZ5fD_AhJQ8dd7MGHo#PPR6,M1}}</ref> In ] ] the speed of light plays the crucial role of a conversion factor between space and time within ].<ref>{{citation | url = http://www.upscale.utoronto.ca/GeneralInterest/Harrison/SpecRel/SpecRel.html | title = The Special Theory of Relativity | first = David M. | last = Harrison | publisher = Department of Physics, University of Toronto | date = April 1999 | accessdate = 8 December 2008}}</ref> This theory together with the ] requires that no matter or information can travel faster than the speed of light. |
Revision as of 07:06, 23 December 2008
"Lightspeed" redirects here. For other uses, see Lightspeed (disambiguation). For other uses, see Speed of light (disambiguation).
Speed of light in different units | |
---|---|
metres per second | 299 792 458 (exact) ≈ 3.00×10 |
km per hour | ≈ 1.08×10 |
miles per hour | ≈ 6.71×10 |
miles per second | ≈ 1.86×10 (186 000) |
Length of time for light to travel... | |
One foot | 1.0 nanoseconds |
One metre | 3.3 nanoseconds |
One km | 3.3 microseconds |
One mile | 5.4 microseconds |
Around Earth's equator | 0.13 seconds |
From Earth to the moon | 1.3 seconds |
From Earth to the sun | 8.3 minutes |
The speed of light in the vacuum of free space is an important physical constant usually denoted by the symbol c0 or simply c. The metre is defined such that the speed of light in a vacuum is exactly 299,792,458 metres per second;
The speed of light is of fundamental importance in physics. It is the speed of not just visible light, but of all electromagnetic radiation, as well as gravitational waves and anything having zero rest mass. In Einstein's theory of relativity the speed of light plays the crucial role of a conversion factor between space and time within spacetime. This theory together with the principle of causality requires that no matter or information can travel faster than the speed of light.
The speed of light is so great that for many purposes it can be regarded as instantaneous. However, where long distances or accurate time measurements are involved, the finite speed of light can be important. For example, in the Global Positioning System (GPS), a GPS receiver measures its distance to satellites based on how long it takes for a radio signal to arrive from the satellite. In astronomy, distances are often measured in light-years, the distance light travels in a year (around ten trillion kilometers).
The speed of light when it passes through a transparent or translucent material medium, like glass or air, is less than its speed in a vacuum. The speed is described by the refractive index of the medium. In specially-prepared media, the speed can be tiny, or even zero.
Overview
The speed of light in vacuum is now viewed as a fundamental physical constant. This postulate, together with the principle of relativity that all inertial frames are equivalent, forms the basis of Einstein's theory of special relativity.
Experimental evidence has shown that the speed of light is independent of the motion of the source. It has also been confirmed experimentally that the two-way speed of light (for example from a source, to a mirror, and back again) is constant. It is not, however, possible to measure the one-way speed of light (for example from a source to a distant detector) without some convention as to how clocks at the source and receiver should be synchronized. Einstein (who was aware of this fact) postulated that the speed of light should be taken as constant in all cases, one-way and two-way.
An observer moving with respect to a collection of light sources would find that light from the sources ahead would be blueshifted while light from those behind was redshifted.
Use of the symbol 'c' for the speed of light
The symbol c for 'constant' or the Latin celeritas ("swiftness"). is used for the speed of light in free space, and in this article c is used exclusively this way. However, some authors use c for the speed of light in material media. To avoid confusion, and for consistency with other constants of free space such as μ0, ε0 and Z0, international bodies such as the International Bureau of Weights and Measures(BIPM) recommend using c0 for the speed of light in free space.
In branches of physics in which the speed of light plays an important part, such as in relativity, it is common to use a system of units known as "natural units" in which c is 1; thus no symbol for the speed of light is required.
Causality and information transfer
According to the theory of special relativity, causality would be violated if information could travel faster than c in one reference frame. In some other reference frames, the information would be received before it had been sent, so the "effect" could be observed before the "cause". Such a violation of causality has never been recorded.
To put it another way, information propagates to and from a point from regions defined by a light cone. The interval AB in the diagram to the right is "time-like" (that is, there is a frame of reference in which event A and event B occur at the same location in space, separated only by their occurring at different times, and if A precedes B in that frame then A precedes B in all frames: there is no frame of reference in which event A and event B occur simultaneously). Thus, it is hypothetically possible for matter (or information) to travel from A to B, so there can be a causal relationship (with A the "cause" and B the "effect").
On the other hand, the interval AC in the diagram to the right is "space-like" (that is, there is a frame of reference in which event A and event C occur simultaneously, separated only in space; see simultaneity). However, there are also frames in which A precedes C (as shown) or in which C precedes A. Barring some way of traveling faster than light, it is not possible for any matter (or information) to travel from A to C or from C to A. Thus there is no causal connection between A and C.
Light years
Astronomical distances are sometimes measured in light-years (the distance that light would travel in one Earth year, roughly 9.46×10 kilometres or about 5.88×10 miles). Because light travels at a large but finite speed, it takes time for light to cover large distances. Thus, the light from distant objects in the universe was emitted from them long ago: in effect, an observer at a large distance sees their distant past. Light from the sun takes around eight and one-third minutes to reach the earth. If the light from the sun were to cease we would not know about it on Earth for several minutes. Even if an observer close to the sun were to communicate this information to Earth, there would be no way for the communication to warn Earth without violating causality.
Communications and GPS
The speed of light is of relevance to communications. For example, given the equatorial circumference of the Earth is about 40,075 km and c about 300,000 km/s, the theoretical shortest time for a piece of information to travel half the globe along the surface is 0.0668 s.
When light is travelling around the globe in an optical fiber, the actual transit time is longer, in part because the speed of light is slower by about 35% in an optical fiber, depending on its refractive index n, v = c/n. Furthermore, straight lines rarely occur in global communications situations, and delays are created when the signal passes through an electronic switch or signal regenerator. A typical time as of 2004 for a U.S. to Australia or Japan computer-to-computer ping is 0.18 s. The speed of light additionally affects wireless communications design.
Another consequence of the finite speed of light is that communications between the Earth and spacecraft are not instantaneous. There is a brief delay from the source to the receiver, which becomes more noticeable as distances increase. This delay was significant for communications between ground control and Apollo 8 when it became the first spacecraft to orbit the Moon: for every question, the ground control station had to wait at least three seconds for the answer to arrive. The communications delay between Earth and Mars is almost ten minutes. As a consequence of this, if a robot on the surface of Mars were to encounter a problem, its human controllers would not be aware of it until ten minutes later; it would then take at least a further ten minutes for instructions to travel from Earth to Mars.
This effect forms the basis of the Global Positioning System (GPS) and similar navigation systems. A position on Earth can be determined by means of the delays in radio signals received from a number of satellites, each carrying a very accurate atomic clock, and very carefully synchronized. To work properly, this method requires that (among many other effects) the relative motion of satellite and receiver be taken into effect, which was how (on an interplanetary scale) the finite speed of light was originally discovered (see the following section).
The speed of light can also be of concern over very short distances. In supercomputers, the speed of light imposes a limit on how quickly data can be sent between processors. If a processor operates at 1 GHz, a signal can only travel a maximum of 300 mm (about one foot) in a single cycle. Processors must therefore be placed close to each other to minimize communication latencies, which can cause difficulty with cooling. If clock frequencies continue to increase, the speed of light will eventually become a limiting factor for the internal design of single chips.
Physics
Constant velocity from all inertial reference frames
Most individuals are accustomed to the addition rule of velocities: if two cars approach each other from opposite directions, each traveling at a speed of 50 km/h, relative to the road surface, one expects that each car will measure the other as approaching at a combined speed of 50 + 50 = 100 km/h to a very high degree of accuracy. However, as speeds increase this rule becomes less accurate. Two spaceships approaching each other, each traveling at 90% the speed of light relative to some third observer between them, would not measure each other as approaching at 90% + 90% = 180% the speed of light; instead they each measure the other as approaching at slightly less than 99.5% the speed of light. This last result is given by the Einstein velocity-addition formula:
where v1 and v2 are the velocities of the spaceships as measured by the third observer, and u is the measured velocity of either space ship as observed by the other. This reduces to u = v1 + v2 for sufficiently small values of v1 and v2 (such as those typically encountered in common daily experiences), as the term (v1·v2)/c0 approaches zero, reducing the denominator to 1.
If one of the velocities for the above formula (or both) are c0, the final result is c0, as is expected if the speed of light is the same in all reference frames. Another important result is that this formula always returns a value which is less than c0 whenever v1 and v2 are less than c0: this shows that no acceleration in any frame of reference can cause one to exceed the speed of light with respect to another observer. Thus c0 acts as a speed limit for all objects with respect to all other objects in special relativity.
Luminiferous aether (discredited)
Before the advent of special relativity, it was believed that light travels through a medium called the luminiferous aether. Maxwell’s equations predict a given speed of light, in much the same way as is the speed of sound in air. The speed of sound in air is relative to the movement of the air itself, and the speed of sound in air with respect to an observer may be changed if the observer is moving with respect to the air (or vice versa). The speed of light was believed to be relative to a medium of transmission for light that acted as air does for the transmission of sound—the luminiferous aether.
The Michelson–Morley experiment, arguably the most famous and useful null-result experiment in the history of physics, was designed to detect the motion of the Earth through the luminiferous aether. It could not find any trace of this kind of motion, suggesting, as a result, that it is impossible to detect one's presumed absolute motion, that is, motion with respect to the hypothesized luminiferous aether. The Michelson–Morley experiment said little about the speed of light relative to the light’s source and observer’s velocity, as both the source and observer in this experiment were traveling at the same velocity together in space.
Interaction with transparent materials
Main article: Dispersion (optics)In passing through materials, the observed speed of light can differ from c, as a result of the time lag between the polarization response of the medium and the incident light. The ratio of c to the phase velocity of light in the material is called the refractive index. The speed of light in air is only slightly less than c. Denser media, such as water and glass, can slow light much more, to fractions such as ¾ and ⅔ of c. Through diamond, light is much slower—only about 124,000 kilometres per second, less than ½ of c. This reduction in speed is also responsible for bending of light at an interface between two materials with different indices, a phenomenon known as refraction.
Since the speed of light in a material depends on the refractive index, and the refractive index may depend on the frequency of the light, light at different frequencies can travel at different speeds through the same material. This effect is called dispersion.
Classically, considering electromagnetic radiation to be a wave, the charges of each atom (primarily the electrons) interact with the electric and magnetic fields of the radiation, slowing its progress.
Slow light
Main article: Slow lightCertain materials have an exceptionally high group index and a correspondingly low group velocity for light waves. In 1999, a team of scientists led by Lene Hau were able to slow the speed of a light pulse to about 17 metres per second; in 2001, they were able to momentarily stop a beam.
In 2003, Mikhail Lukin, with scientists at Harvard University and the Lebedev Institute in Moscow, succeeded in completely halting light by directing it into a Bose–Einstein condensate of the element rubidium, the atoms of which, in Lukin's words, behaved "like tiny mirrors" due to an interference pattern in two "control" beams.
Faster-than-light observations and experiments
Main article: Faster-than-lightIt is generally considered that it is impossible for any information or matter to travel faster than c, because it would travel backwards in time relative to some observers. However, there are many physical situations in which speeds greater than c are encountered.
Things that can travel faster than the speed of light
It has long been known theoretically that it is possible for the "group velocity" of light to exceed c. One experiment in 2000 made the group velocity of laser beams travel for extremely short distances through caesium atoms at 300 times c.
However, it is not possible to use this technique to transfer information faster than c: the velocity of information transfer depends on the front velocity (the speed at which the first rise of a pulse above zero moves forward) and the product of the group velocity and the front velocity is equal to the square of the normal speed of light in the material.
Exceeding the group velocity of light in this manner is comparable to exceeding the speed of sound by arranging people distantly spaced in a line, and asking them all to shout "I'm here!", one after another with short intervals, each one timing it by looking at their own wristwatch so they don't have to wait until they hear the previous person shouting. Another example can be seen when watching ocean waves washing up on shore. With a narrow enough angle between the wave and the shoreline, the breakers travel along the waves' length much faster than the waves' movement inland.
If a laser is swept across a distant object, the spot of light can easily be made to move at a speed greater than c. Similarly, a shadow projected onto a distant object can be made to move faster than c. In neither case does any matter or information travel faster than light.
In quantum mechanics, certain quantum effects may be transmitted at speeds greater than c. For example, the quantum states of two particles can be entangled. Until the particles are observed, they exist in a superposition of two quantum states, (+½, −½) and (−½, +½). If the particles are separated and one of them is observed to determine its quantum state then the quantum state of the second particle is determined automatically. If, as in some interpretations of quantum mechanics, one presumes that the information about the quantum state is local to one particle, then one must conclude that second particle takes up its quantum state instantaneously as soon as the first observation is carried out. However, it is impossible to control which quantum state the first particle will take on when it is observed, so no information can be transmitted in this manner.
Proper speeds
If a spaceship travels to a planet one light year (as measured in the Earth's rest frame) away from Earth at high speed, the time taken to reach that planet could be less than one year as measured by the traveller's clock (although it will always be more than one year as measured by a clock on Earth). The value obtained by dividing the distance travelled, as determined in the Earth's frame, by the time taken, measured by the traveller's clock, is known as a proper speed or a proper velocity. There is no limit on the value of a proper speed as a proper speed does not represent a speed measured in a single inertial frame. A light signal that left the Earth at the same time as the traveller would always get to the destination before the traveller.
Things which only appear to travel faster than the speed of light
So-called superluminal motion is seen in certain astronomical objects, such as the jets of radio galaxies and quasars. However, these jets are not moving at speeds in excess of the speed of light: the apparent superluminal motion is a projection effect caused by objects moving near the speed of light and at a small angle to the line of sight.
Travel faster than the speed of light in a medium
It is possible for shock waves to be formed with electromagnetic radiation. As a charged particle travels through an insulating medium, it disrupts the local electromagnetic field in the medium. Electrons in the atoms of the medium will be displaced and polarised by the passing field of the charged particle, and photons are emitted as the electrons in the medium restore themselves to equilibrium after the disruption has passed. (In a conductor, the equilibrium can be restored without emitting a photon.) In normal circumstances, these photons destructively interfere with each other and no radiation is detected. However, if the disruption travels faster than the photons themselves travel, as when a charged particle exceeds the speed of light in that medium, the photons constructively interfere and intensify the observed radiation. The result (analogous to a sonic boom) is known as Čerenkov radiation.
Ancient, medieval and early modern history
Until relatively recent times, the speed of light was largely a matter of conjecture. Empedocles maintained that light was something in motion, and therefore there had to be some time elapsed in travelling. Aristotle said that, on the contrary, "light is due to the presence of something, but it is not a movement". Furthermore, if light had a finite speed, it would have to be very great; Aristotle asserted "the strain upon our powers of belief is too great" to believe this. The opposite view was argued by some, notably Roger Bacon.
Euclid proposed the emission theory of vision, (also advanced by Ptolemy) where light was emitted from the eye, instead of entering the eye from another source. Using this theory, Heron of Alexandria advanced the argument that the speed of light must be infinite, since distant objects such as stars appear immediately upon opening the eyes.
Early Muslim philosophers initially agreed with the Aristotelian view of the speed of light being infinite. In 1021, however, the Iraqi physicist, Ibn al-Haytham (Alhazen), published the Book of Optics, in which he used experiments to support the intromission theory of vision, where light moves from an object into the eye, making use of instruments such as the camera obscura. This led to Alhazen proposing that light must therefore have a finite speed, and that the speed of light is variable, with its speed decreasing in denser bodies. He argued that light is a “substantial matter”, the propagation of which requires time “even if this is hidden to our senses”. This debate continued in Europe and the Middle East throughout the Middle Ages.
In the 11th century, Abū Rayhān al-Bīrūnī agreed that light has a finite speed and observed that the speed of light is much faster than the speed of sound. In the 1270s, Witelo considered the possibility of light travelling at infinite speed in a vacuum but slowing down in denser bodies. A comment on a verse in the Rigveda by the 14th century Indian scholar Sayana may be interpreted as suggesting an estimate for the speed of light that is in good agreement with its actual speed. In 1574, the Ottoman astronomer and physicist Taqi al-Din agreed with Alhazen that the speed of light is constant, but variable in denser bodies, and suggested that it would take a long time for light from the stars which are millions of kilometres away to reach the Earth.
In the early 17th century, Johannes Kepler believed that the speed of light was infinite since empty space presents no obstacle to it. Francis Bacon argued that the speed of light was not necessarily infinite, since something can travel too fast to be perceived. René Descartes argued that if the speed of light were finite, the Sun, Earth, and Moon would be noticeably out of alignment during a lunar eclipse. Since such misalignment had not been observed, Descartes concluded the speed of light was infinite. Descartes speculated that if the speed of light was found to be finite, his whole system of philosophy might be demolished.
Measurement of the speed of light
Early attempts
Isaac Beeckman proposed an experiment (1629) in which a person would observe the flash of a cannon reflecting off a mirror about one mile (1.6 km) away. Galileo Galilei proposed an experiment (1638), with an apparent claim to having performed it some years earlier, to measure the speed of light by observing the delay between uncovering a lantern and its perception some distance away. He concluded that the speed of light is ten times faster than the speed of sound (in reality, light is around a million times faster than sound). This experiment was carried out by the Accademia del Cimento of Florence in 1667, with the lanterns separated by about one mile (1.6 km). No delay was observed. Robert Hooke explained the negative results as Galileo had by pointing out that such observations did not establish the infinite speed of light, but only that the speed must be very great.
Astronomical techniques
The first quantitative estimate of the speed of light was made in 1676 by Ole Christensen Rømer, who was studying the motions of Jupiter's moon, Io, with a telescope. It is possible to time the orbital revolution of Io because it enters and exits Jupiter's shadow at regular intervals (at C or D). Rømer observed that Io revolved around Jupiter once every 42.5 hours when Earth was closest to Jupiter (at H). He also observed that, as Earth and Jupiter moved apart (as from L to K), Io's exit from the shadow would begin progressively later than predicted. It was clear that these exit "signals" took longer to reach Earth, as Earth and Jupiter moved further apart. This was as a result of the extra time it took for light to cross the extra distance between the planets, time which had accumulated in the interval between one signal and the next. The opposite is the case when they are approaching (as from F to G). Rømer observed 40 orbits of Io when Earth was approaching Jupiter to be 22 minutes shorter than 40 orbits of Io when Earth was moving away from Jupiter. On the basis of those observations, Rømer concluded that it took light 22 minutes to cross the distance the Earth traversed in 80 orbits of Io. That corresponds to a ratio between the speed of light of the speed with which Earth orbits the sun of
In comparison the modern value is about 10,100.
Around the same time, the astronomical unit was estimated to be about 140 million kilometres. The astronomical unit and Rømer's time estimate were combined by Christiaan Huygens, who estimated the speed of light to be 1,000 Earth diameters per minute, based on having misinterpreted Rømer's value of 22 minutes to mean the time it would take light to cross the diameter of the orbit of the Earth. This is about 220,000 kilometres per second (136,000 miles per second), 26% lower than the currently accepted value, but still very much faster than any physical phenomenon then known.
Isaac Newton also accepted the finite speed. In his 1704 book Opticks he reports the value of 16.6 Earth diameters per second (210,000 kilometres per second, 30% less than the actual value), which it seems he inferred for himself (whether from Rømer's data, or otherwise, is not known). The same effect was subsequently observed by Rømer for a "spot" rotating with the surface of Jupiter. And later observations also showed the effect with the three other Galilean moons, where it was more difficult to observe, thus laying to rest some further objections that had been raised.
Even if, by these observations, the finite speed of light may not have been established to everyone's satisfaction (notably Jean-Dominique Cassini's), after the observations of James Bradley (1728), the hypothesis of infinite speed was considered discredited. Bradley deduced that starlight falling on the Earth should appear to come from a slight angle, which could be calculated by comparing the speed of the Earth in its orbit to the speed of light. This "aberration of light", as it is called, was observed to be about 1/200 of a degree. Bradley calculated the speed of light as about 298,000 kilometres per second (185,000 miles per second). This is only slightly less than the currently accepted value (less than one percent). The aberration effect has been studied extensively over the succeeding centuries, notably by Friedrich Georg Wilhelm Struve and de:Magnus Nyrén.
Earth-bound techniques
The first successful measurement of the speed of light using an earthbound apparatus was carried out by Hippolyte Fizeau in 1849. (This measures the speed of light in air, which is slower than the speed of light in vacuum by a factor of the refractive index of air, about 1.0003.) Fizeau's experiment was conceptually similar to those proposed by Beeckman and Galileo. A beam of light was directed at a mirror several thousand metres away. On the way from the source to the mirror, the beam passed through a rotating cog wheel. At a certain rate of rotation, the beam could pass through one gap on the way out and another on the way back. If α is the angle between two consecutive openings and d the distance between the toothed wheel and the mirror, then the tooth wheel must rotate with the angular speed (ω):
in order for the light to pass through. Fizeau chose d = 8 km.
But at slightly higher or lower rates, the beam would strike a tooth and not pass through the wheel. Knowing the distance to the mirror, the number of teeth on the wheel, and the rate of rotation, the speed of light could be calculated. Fizeau reported the speed of light as 313,000 kilometres per second. Fizeau's method was later refined by Marie Alfred Cornu (1872) and Joseph Perrotin (1900).
Leon Foucault improved on Fizeau's method by replacing the cogwheel with a rotating mirror. Foucault's estimate, published in 1862, was 298,000 kilometres per second. Foucault's method was also used by Simon Newcomb and Albert A. Michelson. Michelson began his lengthy career by replicating and improving on Foucault's method. If α is the angle between the normals to two consecutive facets and d the distance between the light source and the mirror, then the mirror must rotate with the angular speed (ω):
in order for the light to pass through.
Michelson–Morley experiment
After the work of James Clerk Maxwell, it was believed that light travelled at a constant speed relative to the "luminiferous aether", the medium that was then thought to be necessary for the transmission of light. This speed was determined by the aether and its permittivity and permeability.
In 1887, the physicists Albert Michelson and Edward Morley performed the influential Michelson–Morley experiment to measure the velocity of the Earth through the aether. As shown in the diagram of a Michelson interferometer, a half-silvered mirror was used to split a beam of monochromatic light into two beams traveling at right angles to one another. After leaving the splitter, each beam was reflected back and forth between mirrors several times (the same number for each beam to give a long but equal path length; the actual Michelson-Morley experiment used more mirrors than shown) then recombined to produce a pattern of constructive and destructive interference. Any slight change in speed of light along one arm of the interferometer compared with its speed along the other arm (because the apparatus was moving with the Earth through the proposed "aether") would then be observed as a change in the pattern of interference. In the event, the experiment gave a null result.
Ernst Mach was among the first physicists to suggest that the experiment amounted to a disproof of the aether theory. Developments in theoretical physics had already begun to provide an alternative theory, Fitzgerald-Lorentz contraction, which explained the null result of the experiment.
It is uncertain whether Albert Einstein knew the results of the Michelson-Morley experiment, but the null result of the experiment greatly assisted the acceptance of his theory of relativity. The constant speed of light is one of the fundamental postulates (together with causality and the equivalence of inertial frames) of special relativity.
In 1926, Michelson used a rotating prism to measure the time it took light to make a round trip from Mount Wilson to Mount San Antonio in California, a distance of about 22 miles (36 km) each way. The precise measurements yielded a speed of 186,285 miles per second (299,796 kilometres per second).
Laboratory-based methods
During World War II, the development of the cavity resonance wavemeter for use in radar, together with precision timing methods, opened the way to laboratory-based measurements of the speed of light. In 1946, Louis Essen in collaboration with A.C. Gordon-Smith used a microwave cavity of precisely known dimensions to establish the frequency for a variety of normal modes of microwaves—which, in common with all electromagnetic radiation, travels at the speed of light in vacuum. As the wavelength of the modes was known from the geometry of the cavity and from electromagnetic theory, knowledge of the associated frequencies enabled a calculation of the speed of light. Their result, 299 792±3 km/s, was substantially greater than those found by optical techniques, and prompted much controversy. However, by 1950 repeated measurements by Essen established a result of 299 792.5±1 km/s; this became the value adopted by the 12th General Assembly of the Radio-Scientific Union in 1957. Most subsequent measurements have been consistent with this value.
With modern electronics (and most particularly the availability of oscilloscopes with time resolutions in the sub-nanosecond regime) the speed of light can now be directly measured by timing the delay of a light pulse from a laser or a LED in reflecting from a mirror, and this kind of experiment is now routine in undergraduate physics laboratories.
Speed of light set by definition
In 1983, the 17th Conférence Générale des Poids et Mesures defined the metre in terms of the distance traveled by light in a given amount of time, which amounts to adopting a standard value for the speed of light in vacuum:
The metre is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second.
Here, the term vacuum is meant in the technical sense of free space. This definition of the metre relies on the definition of the second, which is:
The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom.
The consequence of this definition is that no experimental measurement could change the fact that the speed of light is exactly 299 792 458 metres per second. A precise experimental measurement of the speed of light could, however, refine or alter the length of a metre.
See also
|
References
Footnotes
- ^ The International System of Units (PDF) (9th ed.), International Bureau of Weights and Measures, Dec 2022, p. 112, ISBN 978-92-822-2272-0
- Chow, Tai L. (2006), Electromagnetic theory, Sudbury MA: Jones and Bartlett, pp. 391–92, ISBN 0-7637-3827-1
- Harrison, David M. (April 1999), The Special Theory of Relativity, Department of Physics, University of Toronto, retrieved 8 December 2008
- Beckman, P.; Mandies, P. (1965), Radio. Sci., 69D: 623
{{citation}}
: Missing or empty|title=
(help)CS1 maint: multiple names: authors list (link) - Kennedy, Roy J.; Thorndike, Edward M. (1932), "Experimental Establishment of the Relativity of Time", Phys. Rev., 42 (3): 400–18, doi:10.1103/PhysRev.42.400
- Hils, Dieter; Hall, J. L. (1990), "Improved Kennedy-Thorndike experiment to test special relativity", Phys. Rev. Lett., 64 (15): 1697–1700, doi:10.1103/PhysRevLett.64.1697
- ^ Zhang, Yuan Zhong; Chang, Yuan-Chung (1998), Special Relativity and Its Experimental Foundations, World Scientific, pp. 31, 171, ISBN 9810227493
- Gibbs, Philip (1997), Why is c the symbol for the speed of light?, University of California, Riverside, retrieved 20 August 2008
- For example, various handbooks. See, for example,
David R Lide (2004). CRC Handbook of Chemistry and Physics. CRC Press. p. 2-9. ISBN 0849304857.,
John W. Harris, Walter Benenson, Horst Stoecker, Holger Lutz (2002). Handbook of Physics. Springer. p. 499.
{{cite book}}
: CS1 maint: multiple names: authors list (link), Jerry C. Whitaker (2005). The Electronics Handbook. CRC Press. p. 235. ISBN 0849318890. E Richard Cohen; et al. (2007). Quantities, Units and Symbols in Physical Chemistry (3rd ed.). Royal Society of Chemistry. p. 184. ISBN 0854044337.{{cite book}}
: Explicit use of et al. in:|author=
(help) - Taylor, Barry N.; Thompson, Ambler, ed. (2008), The International System of Units (SI): NIST Special Publication 330 (PDF), Washington, DC: NIST, p. 11, 33 & Table 7, p. 34
{{citation}}
: CS1 maint: multiple names: editors list (link) - A typical value for the refractive index of optical fiber is between 1.518 and 1.538: Midwinter, John E. (1991), Optical Fibers for Transmission (2nd ed.), Krieger, ISBN 0894645951
- For a discussion of the aether, see Joseph Larmor (1900). Aether and Matter: A Development of the Dynamical Relations of the Aether to Material Systems on the Basis of the Atomic Constitution of Matter. Cambridge University Press. and Joseph Larmor (1895). "A dynamical theory of the electric and lumiferous medium. Part II; theory of electrons". Proceedings of the Royal Society. 58: 222–228.
- Refraction, Snell's law, and total internal reflection, Physics Department, Boston University, 1998, retrieved 20 August 2008
- Hau, L. V. ; Harris, S. E.; Dutton, Z.; Behroozi, C. H. (1999), "Light speed reduction to 17 metres per second in an ultracold atomic gas", Nature, 397: 594–98, doi:10.1038/17561
{{citation}}
: CS1 maint: multiple names: authors list (link) - Liu, C.; Dutton, Z.; Behroozi, C. H.; Hau, L. V. (2001), "Observation of coherent optical information storage in an atomic medium using halted light pulses" (PDF), Nature, 409: 490–93, doi:10.1038/35054017
{{citation}}
: CS1 maint: multiple names: authors list (link) - Bajcsy, M.; Zibrov, A. S.; Lukin, M. D. (2003), "Stationary pulses of light in an atomic medium", Nature, 426: 638–41, doi:10.1038/nature02176
{{citation}}
: CS1 maint: multiple names: authors list (link) - Dumé, Belle (10 December 2003), Switching light on and off, PhysicsWorld.com, retrieved 8 December 2008
- Taylor, Edwin F. (1992), Spacetime Physics, W. H. Freeman, pp. 74–75, ISBN 0716723271
{{citation}}
:|first2=
missing|last2=
(help) - Egan, Greg (17 August 2000), Subluminal, retrieved 6 February 2007
- Wang, L. J. (2000), "Gain-assisted superluminal light propagation", Nature, 406 (406): 277, doi:10.1038/35018520
{{citation}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Whitehouse, David (19 July 2000), Beam smashes light barrier, BBC News, retrieved 8 December 2008
- Brunner, Nicolas; Scarani, Valerio; Wegmüller, Mark; Legré, Matthieu; Gisin, Nicolas (2004), "Direct Measurement of Superluminal Group Velocity and Signal Velocity in an Optical Fiber", Phys. Rev. Lett., 93: 203902
- Gibbs, Philip (1997), Is Faster-Than-Light Travel or Communication Possible?, University of California, Riverside, retrieved 20 August 2008
- Wertheim, M. (June 20, 2007), "The Shadow Goes", New York Times
- Rees, M. (1966), "The Appearance of Relativistically Expanding Radio Sources", Nature, 211: 468, doi:10.1038/211468a0
- Čerenkov, Pavel Alekseyevich (1934), "Visible Emission of Clean Liquids by Action of γ Radiation", Dokl. Akad. Nauk SSSR, 2: 451: Reprinted in "Selected Papers of Soviet Physicists", Usp. Fiz. Nauk, 93: 385, 1967. See also: Gorbunova, A. N.; Čerenkov, E. P., eds. (1999), Pavel Alekseyevich Čerenkov: Chelovek i Otkrytie, Nauka, pp. 149–53
- ^ MacKay, R. J.; Oldford, R. W. (2000), "Scientific Method, Statistical Method and the Speed of Light", Statistical Science, 15 (3): 254–78, doi:10.1214/ss/1009212817
- Steffens, Bradley (2006), "5", Ibn al-Haytham: First Scientist, Morgan Reynolds, ISBN 1599350246
- Hamarneh, Sami (1972), "Review: Hakim Mohammed Said, Ibn al-Haitham", Isis, 63 (1): 119
- ^ Lester, Paul Martin (2005), Visual Communication: Images With Messages, Thomson Wadsworth, pp. 10–11, ISBN 0534637205
- O'Connor, John J.; Robertson, Edmund F., "Abu Ali al-Hasan ibn al-Haytham", MacTutor History of Mathematics Archive, University of St Andrews
- Lauginie, Pierre (2005). "Measuring: Why? How? What?" (PDF). Eighth International History, Philosophy, Sociology & Science Teaching Conference. Retrieved 2008-07-18.
{{cite web}}
: Unknown parameter|month=
ignored (help) - O'Connor, John J.; Robertson, Edmund F., "Abu Arrayhan Muhammad ibn Ahmad al-Biruni", MacTutor History of Mathematics Archive, University of St Andrews
- Marshall, Peter (1981), "Nicole Oresme on the Nature, Reflection, and Speed of Light", Isis, 72 (3): 357–74
- Sayana-commentary on Rigveda 1.50, see: Müller, Max, ed. (1890), Rig-Veda-Samhita, together with the Commentary of Sayana, London: Oxford University Press
- Topdemir, Hüseyin Gazi (1999), Takîyüddîn'in Optik Kitabi, Ankara: Ministry of Culture Press (cf. Topdemir, Hüseyin Gazi (June 30, 2008), Taqi al-Din ibn Ma‘ruf and the Science of Optics: The Nature of Light and the Mechanism of Vision, FSTC, retrieved July 4, 2008)
- ^ Teuber, Jan (2004), "Ole Rømer og den bevægede Jord – en dansk førsteplads?", in Friedrichsen, Per; Henningsen, Ole; Olsen, Olaf; Thykier, Claus; Tortzen, Chr. Gorm (ed.), Ole Rømer – videnskabsmand og samfundstjener, Kroppedal, Studier i astronomi, Nyere tid, Arkæologi, Gads, pp. 217–19, ISBN 87-12-04139-4
{{citation}}
: CS1 maint: multiple names: editors list (link) Template:Da icon - Cooke, James; Martin, Michael; McCartney, Harold; Wilf, Boyce (1968), "Direct determination of the speed of light as a general physics laboratory experiment", Am. J. Phys., 36: 847, doi:10.1119/1.1975166
{{citation}}
: CS1 maint: multiple names: authors list (link) - Ulaby, F. T.; Hauck, B. L. (2000), "Undergraduate electromagnetics laboratory: An invaluable part ofthe learning process" (PDF), Proc. IEEE, 88 (1): 55–62, doi:10.1109/5.811601
{{citation}}
: CS1 maint: multiple names: authors list (link) - Aoki, Kenichiro; Mitsui, Takahisa (2008), "A small tabletop experiment for a direct measurement of the speed of light", Am. J. Phys., 76 (9): 812–15
- James, Mary B.; Ormond, Robert B.; Stasch, Aric J. (1999), "Speed of light measurement for the myriad", Am. J. Phys., 67 (8): 681–84, doi:10.1119/1.19352
{{citation}}
: CS1 maint: multiple names: authors list (link) - The International System of Units (PDF) (9th ed.), International Bureau of Weights and Measures, Dec 2022, pp. 112–13, ISBN 978-92-822-2272-0
Historical references
- Rømer, Ole (7 December 1676), "Démonstration touchant le mouvement de la lumière", Journal des sçavans: 223–36 Template:Fr icon. Translated as "A Demonstration concerning the Motion of Light", Phil. Trans. R. Soc. (136): 893–94, 25 June 1677
- Halley, Edmund (1694), "Monsieur Cassini, his New and Exact Tables for the Eclipses of the First Satellite of Jupiter, reduced to the Julian Stile and Meridian of London", Phil. Trans. R. Soc., XVIII (214): 237–56
- Fizeau, H. L. (1849), "Sur une expérience relative à la vitesse de propagation de la lumière", C. R. Acad. Sci. Paris, 29: 90–92, 132 Template:Fr icon
- Foucault, J. L. (1862), "Détermination expérimentale de la vitesse de la lumière: parallaxe du Soleil", C. R. Acad. Sci. Paris, 55: 501–03, 792–96
- Michelson, A. A. (1878), "Experimental Determination of the Velocity of Light", Proc. Am. Assoc. Adv. Sci., 27: 71–77
- Newcomb, Simon (May 13, 1886), "The Velocity of Light", Nature: 29–32
- Perrotin, Joseph (1900), "Sur la vitesse de la lumière", C. R. Acad. Sci. Paris, 131: 731–34 Template:Fr icon
- Michelson, A. A.; Pease, F. G.; Pearson, F. (1935), "Measurement Of The Velocity Of Light In A Partial Vacuum", Astrophys. J., 82: 26–61
Modern references
- Brillouin, Léon (1960), Wave propagation and group velocity, Academic Press
- Jackson, John David (1975), Classical electrodynamics (2nd ed.), Wiley, ISBN 0-471-30932-X
- MacKay, R. J.; Oldford, R. W. (2000), "Scientific Method, Statistical Method and the Speed of Light", Statistical Science, 15 (3): 254–78
- Keiser, Gerd (2000), Optical Fiber Communications (3rd ed.), Mcgraw-Hill, p. 32, ISBN 0072321016
External links
- Speed of light in vacuum (at NIST)
- Definition of the metre (BIPM)
- Data Gallery: Michelson Speed of Light (Univariate Location Estimation) (download data gathered by A.A. Michelson)
- Subluminal (Java applet demonstrating group velocity information limits)
- De Mora Luminis at MathPages
- Light discussion on adding velocities
- Speed of Light (University of Colorado Department of Physics)
- How is the speed of light measured?
- The Fizeau "Rapidly Rotating Toothed Wheel" Method
Extremes of motion | |
---|---|
Speed | |
Distance | |
Endurance | |
See also |
Template:Link FA Template:Link FA Template:Link FA
Categories: