Revision as of 19:12, 20 October 2005 editWilliam M. Connolley (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers, Rollbackers66,008 editsm minor grammar + add "std"← Previous edit | Revision as of 22:20, 20 October 2005 edit undoCSTAR (talk | contribs)Extended confirmed users8,870 edits →Incompleteness: Renamed to Indeterminacy and incompletenessNext edit → | ||
Line 65: | Line 65: | ||
The units involved in quantum uncertainty are on the order of ] (found experimentally to be 6.6 x 10<sup>-34</sup> J·s). | The units involved in quantum uncertainty are on the order of ] (found experimentally to be 6.6 x 10<sup>-34</sup> J·s). | ||
==Indeterminacy and incompleteness== | |||
==Incompleteness== | |||
Quantum indeterminacy is the assertion that the state of a system does not determine a unique collection of of values for all its measurable properties. Indeed in the quantum mechanical formalism, for a given quantum state, each one of these measurable values will be obtained non-deterministically in accordance with a probability distribution which is uniquely determined by the system state. Note that the state is destroyed by measurement, so when we refer to collection of values, each measured value in this collection must be obtained using a freshly prepared state. | |||
This indeterminacy might be regarded as a kind of essential incompleteness in our knowledge of the system state. Notice however, that the indeterminacy as stated above only applies to values of measurements not to the quantum state. | |||
⚫ | |||
⚫ | However, Einstein did believe that quantum state cannot be a complete description of a physical system and, it is commonly thought, never came to terms with quantum mechanics. In fact, Einstein, ] and ] did show that if quantum mechanics is correct, then the classical view of how the real world works (at least after special relativity) is no longer tenable. This view included the following two ideas: | ||
# A measurable property of a physical system whose value can be predicted with certainty is actually an element of reality (this was the terminology used by EPR). | # A measurable property of a physical system whose value can be predicted with certainty is actually an element of reality (this was the terminology used by EPR). | ||
# Effects of local actions have a finite propagation speed. | # Effects of local actions have a finite propagation speed. |
Revision as of 22:20, 20 October 2005
Quantum indeterminacy is the apparent necessary incompleteness in the description of a physical system, that has become one of the characteristics of the standard description of quantum physics. Prior to quantum physics, it was thought that a physical system had a determinate state which (a) uniquely determined all the values of its measurable properties and conversely (b) the values of its measurable properties uniquely determined the state. Albert Einstein may have been the first person to carefully point out the radical effect the new quantum physics would have on our notion of physical state.
Quantum indeterminacy can be quantitatively characterized by a probability distribution on the set of outcomes of measurements of an observable. The distribution is uniquely determined by the system state, and moreover quantum mechanics provides a recipe for calculating this probability distribution.
Indeterminacy in measurement was not an innovation of quantum mechanics, since it had established early on by experimentalists that errors in measurement may lead to indeterminate outcomes. However, by the latter half of the eighteenth century, measurement errors were well understood and it was known that they could either reduced by better equipment or accounted for by statistical error models. In quantum mechanics, however indeterminacy is of a much more fundamental nature, having nothing to do with errors or disturbance.
Measurement
An adequate account of quantum indeterminacy requires a theory of measurement. Many theories have been proposed since the beginning of quantum mecahnics and quantum measurement continues to be an active research area in both theoretical and experimental physics. Possibly the first systematic attempt at a mathematical theory was developed by John von Neumann. The kind of measurements he investigated (discussed in the book Mathematical Foundations of Quantum Mechanics) are now called projective measurements. That theory was based in turn on the theory of projection-valued measures for self-adjoint operators which had been recently developed (by von Neumann and independently by Marshall Stone) and the Hilbert space formulation of quantum mechanics (attributed by von Neumann to Paul Dirac).
In this formulation, the state of a physical system corresponds to a vector of length 1 in a Hilbert space H over the complex numbers. An observable is represented by a self-adjoint operator A on H. If H is finite dimensional, by the spectral theorem, A has an orthonormal basis of eigenvectors. If the system is in state ψ, then immediately after measurement the system will occupy a state which is an eigenvector e of A and the observed value λ will be the corresponding eigenvalue A e = λ e. It is immediate from this that measurement in general will be non-deterministic. Quantum mechanics moreover, gives a recipe for computing a probability distribution Pr on the possible outcomes given the initial system state is ψ. The probaility is
where E(λ) is the projection onto the space of eigenvectors of A with eigenvalue λ.
Example
Bloch sphere showing eigenvectors for Pauli Spin matrices. The Bloch sphere is a two-dimensional surface the points of which correspond to the state space of some QM system. At the state ψ the values of σ1 are +1 whereas the values of σ3 take the values +1, -1 with probability 1/2.
In this example, we consider a single spin 1/2 particle (such as an electron) in which we only consider the spin degree of freedom. The corresponding Hilbert space is the two-dimensional Hilbert space C, with each quantum state corresponding to a unit vector in C.
are self-adjoint and correspond to spin-measurements along the coordinate axes.
The Pauli matrices all have the eigenvalues +1, − 1.
- For σ1, these eigenvalues correspond to the eigenvectors
- For σ3, they correspond to the eigenvectors
Thus in the state
σ1 has the determinate value +1, while measurement of σ3 can produce either +1, −1 each with probability 1/2. In fact, there is no state in which measurement of both σ1 and σ3 have determinate values.
There are various questions that can be asked about the above indeterminacy assertion.
- Can the indeterminacy be understood as similar to an error in measurement explainable by an error parameter? More precisely, is there a hidden parameter that could account for the statistical indeterminacy in a completely classical way?
- Can the indeterminacy be understood as a disturbance of the system being measured?
Von Neumann formulated the question 1) and provided an argument why the answer had to be no, if one accepted the formalism he was proposing, although his argument contained a flaw. The definitive negative answer to 1) has been established by experiment that Bell's inequalities are violated (see Bell test experiments.) The answer to 2) depends on how disturbance is understood (particularly since measurement is disturbance), but in the most natural interpretation the answer is also no. To see this, consider two sequences of measurements: (A) which measures exclusively σ1 and (B) which measures only σ3 of a spin system in the state ψ. The measurement outcomes of (A) are all +1, while the statistical distribution of the measurements (B) is still divided between +1, −1 with probability 1/2.
Other examples of indeterminacy
Quantum indeterminacy can also be illustrated in terms of a particle with a definitely measured momentum for which there must be a fundamental limit to how precisely its location can be specified. This quantum uncertainty principle can be expressed in terms of other variables, for example, a particle with a definitely measured energy has a fundamental limit to how precisely one can specify how long it will have that energy. The units involved in quantum uncertainty are on the order of Planck's constant (found experimentally to be 6.6 x 10 J·s).
Indeterminacy and incompleteness
Quantum indeterminacy is the assertion that the state of a system does not determine a unique collection of of values for all its measurable properties. Indeed in the quantum mechanical formalism, for a given quantum state, each one of these measurable values will be obtained non-deterministically in accordance with a probability distribution which is uniquely determined by the system state. Note that the state is destroyed by measurement, so when we refer to collection of values, each measured value in this collection must be obtained using a freshly prepared state.
This indeterminacy might be regarded as a kind of essential incompleteness in our knowledge of the system state. Notice however, that the indeterminacy as stated above only applies to values of measurements not to the quantum state.
However, Einstein did believe that quantum state cannot be a complete description of a physical system and, it is commonly thought, never came to terms with quantum mechanics. In fact, Einstein, Boris Podolsky and Nathan Rosen did show that if quantum mechanics is correct, then the classical view of how the real world works (at least after special relativity) is no longer tenable. This view included the following two ideas:
- A measurable property of a physical system whose value can be predicted with certainty is actually an element of reality (this was the terminology used by EPR).
- Effects of local actions have a finite propagation speed.
This failure of the classical view was one of the conclusions of the EPR thought experiment in which two remotely located observers, now commonly referred to as Alice and Bob, perform independent measurements of spin on a pair of electrons, prepared at a source in a special state called a spin singlet state. It was a conclusion of EPR, using the formal apparatus of quantum theory, that once Alice measured spin in the x direction, Bob's measurement in the x direction was determined with certainty, whereas immediately before Alice's measurement Bob's outcome was only statistically determined. From this it follows that either value of spin in the x direction is not an element of reality or that the effect of Alice's measurement has infinite speed of propagation.
See also
- Quantum indeterminacy in computation
- Quantum mind
- just about any of the quantum mechanics articles
External link
- Common Misconceptions Regarding Quantum Mechanics See especially part III "Misconceptions regarding measurement".
References
- A. Aspect, Bell's inequality test: more ideal than ever, Nature 398 189 (1999).
- J.S. Bell On the Einstein-Poldolsky-Rosen paradox, Physics 1 195 (1964).
- A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47 777 (1935).
- G. Mackey, Mathematical Foundations of Quantum Mechanics, W. A. Benjamin, 1963 (paperback reprint by Dover 2004).
- J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955. Reprinted in paperback form.
- R. Omnès, Understanding Quantum Mechanics, Princeton University Press, 1999.