Misplaced Pages

Phonograph record: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 22:15, 19 May 2009 edit63.16.52.208 (talk) External links← Previous edit Revision as of 12:16, 21 May 2009 edit undoRedrose64 (talk | contribs)Autopatrolled, Administrators273,059 editsm "Electrical" recording: added link to John Philip SousaNext edit →
Line 84: Line 84:


The Orthophonic had an interior folded exponential horn, a sophisticated design informed by impedance-matching and ] theory, and designed to provide a relatively flat frequency response. Its first public demonstration was front-page news in the New York Times, which reported that: The Orthophonic had an interior folded exponential horn, a sophisticated design informed by impedance-matching and ] theory, and designed to provide a relatively flat frequency response. Its first public demonstration was front-page news in the New York Times, which reported that:
<blockquote>"The audience broke into applause... John Philip Sousa : 'Gentleman , that is a band. This is the first time I have ever heard music with any soul to it produced by a mechanical talking machine.' ... The new instrument is a feat of mathematics and physics. It is not the result of innumerable experiments, but was worked out on paper in advance of being built in the laboratory.... The new machine has a range of from 100 to 5,000 frequencies, or five and a half octaves.... The 'phonograph tone' is eliminated by the new recording and reproducing process."<ref>New York Times (1925-10-07). "New Music Machine Thrills All Hearers At First Test Here". '']'', October 7, 1925, p. 1.</ref></blockquote> <blockquote>"The audience broke into applause... ] : 'Gentleman , that is a band. This is the first time I have ever heard music with any soul to it produced by a mechanical talking machine.' ... The new instrument is a feat of mathematics and physics. It is not the result of innumerable experiments, but was worked out on paper in advance of being built in the laboratory.... The new machine has a range of from 100 to 5,000 frequencies, or five and a half octaves.... The 'phonograph tone' is eliminated by the new recording and reproducing process."<ref>New York Times (1925-10-07). "New Music Machine Thrills All Hearers At First Test Here". '']'', October 7, 1925, p. 1.</ref></blockquote>


Gradually, electrical reproduction entered the home. The clockwork motor was replaced by an electric motor; the 'needle' and diaphragm (the 'sound box') was replaced with a 'pickup' using either a steel or sapphire stylus, and a transducer to convert the groove vibrations into an electrical signal. The exponential horn became an amplifier and loudspeaker.{{Fact|date=February 2009}} Gradually, electrical reproduction entered the home. The clockwork motor was replaced by an electric motor; the 'needle' and diaphragm (the 'sound box') was replaced with a 'pickup' using either a steel or sapphire stylus, and a transducer to convert the groove vibrations into an electrical signal. The exponential horn became an amplifier and loudspeaker.{{Fact|date=February 2009}}

Revision as of 12:16, 21 May 2009

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)

No issues specified. Please specify issues, or remove this template.

(Learn how and when to remove this message)


A gramophone record (also known as phonograph record, or simply record) is an analog sound storage medium consisting of a flat disc with an inscribed modulated spiral groove usually starting near the periphery and ending near the centre of the disc. When made of polyvinyl chloride they are also known as vinyl records.

Gramophone records were the primary medium used for commercial music reproduction for most of the 20th century. They replaced the phonograph cylinder as the most popular recording medium in the 1900s, and although they were supplanted in popularity in the late 1980s by digital media, leaving mainstream by 1991, they continue to be manufactured and sold as of 2009, still used by DJs and audiophiles for certain types of music, especially electronic dance music, hip hop, punk rock, and jazz.

A 12-inch (30-cm) 33 1/3 rpm record (left), a 7-inch 45 rpm record (right), and a CD (above)

Types of records

See also: Recording medium comparison

As recording technology evolved, more specific terms for various types of phonograph records were used in order to describe some aspect of the record: either its correct rotational speed ("16⅔ R.P.M.", "33⅓ R.P.M.", "45 R.P.M.", "78 R.P.M.") or the material used (particularly "vinyl" to refer to records made of polyvinyl chloride, or the earlier "shellac records" generally the main ingredient in 78s). Other terms such as "Long Play" or L.P. and "Extended Play" or E.P. were coined to describe multi-song records which were capable of playing for far longer than the single song per side records, which typically didn't go much past 4 minutes per side. An L.P. can play for about thirty minutes per side. The 7" 45rpm format normally contained one song per side but a 7" EP could achieve recording times of 10 to 15 minutes at the expense of attenuating and compressing the sound to reduce the width required by the groove. EP discs were generally used to make available songs not on singles including songs on LPs albums in a smaller, less expensive format for those who had only 45 rpm players. The large center hole on 7" 45rpm records allows for easier handling by jukebox mechanisms. In modern times it is common for a band to release an EP of 4 or 5 songs to build buzz before the full album, or LP, is released. The use of the term "album" no longer has any relation to the physical format (typically compact disc), but rather the length of the album and the number of songs.

Sizes of records in America and the UK are generally measured in inches, usually represented with a double prime symbol, e.g. a 7-inch or 7" record which are generally 45rpm records. LPs were 10" records at first, but soon the 12" size became by far the most common with 78s generally being 10" but also 12" and 7" and even smaller—the so called 'little wonders.'

History

Template:Sound sample box align right

Au Clair de la Lune This 1860 phonautogram by Edouard-Leon Scott is the earliest known recorded sound.
Problems playing this file? See media help.

Template:Sample box end

Early history

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (August 2008) (Learn how and when to remove this message)
Edison cylinder phonograph ca. 1899

A device utilizing a vibrating pen to graphically represent sound on discs of paper, without the idea of playing it back in any manner, was built by Edouard-Leon Scott of France in 1857. While the mechanism, known as a phonautograph, was intended solely to depict the visual characteristics of sound, it was recently realized that this depiction could be digitally analyzed and reconstructed as an audible recording. Just such an early phonoautogram, made in 1860 and now the earliest known audio recording, has been reproduced using computer technology.

In 1877, Thomas Edison developed the phonautograph into a machine, the phonograph, that was capable of replaying the recordings made. The recordings were made on tinfoil, and were initially intending to be used as a voice recording medium, typically for office dictation.

This phonograph cylinder dominated the recorded sound market beginning in the 1880s. Lateral-cut disc records were invented by Emile Berliner in 1888 and were used exclusively in toys until 1894, when Berliner began marketing disc records under the Berliner Gramophone label. The Edison Blue Amberol Record was introduced in 1912, with a longer playing time of around 4 minutes (at 160 rpm) and a more resilient playing surface than its wax predecessor, but the format was doomed due to the difficulty of reproducing recordings. By November 1918 the patents for the manufacture of lateral-cut disc records expired, opening the field for countless companies to produce them, causing disc records to overtake cylinders in popularity. Production of Amberol cylinders ceased in the late 1920s. Disc records would dominate the market until they were supplanted by the Compact Disc, starting from the 1980s.

78 rpm disc developments

Early speeds

Hungarian Pathé record, 90 rpm to 100 rpm

Early disc recordings were produced in a variety of speeds ranging from 60 rpm to 120 rpm, and a variety of sizes. At least one manufacturer, Philips, produced records that played at a constant linear velocity. As these were played from the inside to the outside, the rpm of the record reduced as reproduction progressed (as is also true of the modern Compact Disc).

Template:Sound sample box align right

78 rpm video Video of a 1936 mechanical 78 rpm gramophone player (acoustic, not electric)
Problems playing this file? See media help.

Template:Sample box end Template:Sound sample box align right

78 rpm needle close-up Close-up of the needle of an acoustic 78 rpm player
Problems playing this file? See media help.

Template:Sample box end

Record of Emile Berliner's Gramophone Company (later Deutsche Grammophon). Made 1908 in Hannover, Germany

As early as 1894, Emile Berliner's United States Gramophone Company was selling single-sided 7" discs with an advertised standard speed of "about 70 rpm".

One standard audio recording handbook describes speed regulators or "governors" as being part of a wave of improvement introduced rapidly after 1897. A picture of a hand-cranked 1898 Victrola shows a governor. It says that spring drives replaced hand drives. It notes that:

"The speed regular was furnished with an indicator that showed the speed when the machine was running so that the records, on reproduction, could be revolved at exactly the same speed...The literature does not disclose why 78 rpm was chosen for the phonograph industry, apparently this just happened to be the speed created by one of the early machines and, for no other reason continued to be used."

By 1925, the speed of the record became standardised at a nominal value of 78 rpm. However, the standard was to differ between America and the rest of the world. The actual 78 speed in America was 78.26 rpm, being the speed of 3600 rpm synchronous motor (run from 60 Hz supply) reduced by 46:1 gearing. Throughout the rest of the world, 77.92 rpm was adopted being the speed of a 3000 rpm synchronous motor (run from 50 Hz supply reduced by 38.5:1 gearing.

Acoustic recording

Early recordings were made entirely acoustically, the sound being collected by a horn and piped to a diaphragm which vibrated the cutting stylus. Sensitivity and frequency range were poor, and frequency response was very irregular, giving cylinder recordings an instantly recognizable tonal quality. A singer practically had to put his face in the recording horn. Cellos and double basses were completely unrecordable. Violins were barely recordable but instruments were modified with a horn built into the sound box to direct the sound into the recorder's horn.

When a jazz group recorded, drums were completely eliminated because their vibrations would dislodge the cutting stylus from the groove. The loudest instruments stood the farthest away from the collecting horn. Lillian Hardin Armstrong, a member of King Oliver's Creole Jazz Band that recorded at Gennett Records in 1923, remembered that at first Oliver and his young second trumpet, Louis Armstrong, stood next to each other and Oliver's horn couldn't be heard. "They put Louis about fifteen feet over in the corner, looking all sad."

"Electrical" recording

German electrical record of the Carl Lindström AG

During the 1920s, engineers including Orlando R. Marsh, as well as those at Western Electric, developed technology for capturing sound with microphones, amplifying it with vacuum tubes, and using the amplified signal to drive an electromagnetic recording head. A wide frequency range could now be recorded, and there was no longer any limit on playback volume.

Although the technology used vacuum tubes and today would be described as "electronic", at the time it was referred to as "electrical". A 1926 Wanamaker's ad in The New York Times offers records "by the latest Victor process of electrical recording". It was recognized as a breakthrough; in , a Times music critic stated:

"...the time has come for serious musical criticism to take account of performances of great music reproduced by means of the records. To claim that the records of succeeded in exact and complete reproduction of all details of symphonic or operatic performances... would be extravagant. the article of today is so far in advance of the old machines has hardly to admit classification under the same name. Electrical recording and reproduction have combined to retain vitality and color in recitals by proxy."

Peter Carl Goldmark (Hungarian: Goldmark Péter Károly) was a Hungarian engineer, during his time with Columbia Records, was instrumental in developing the long-playing (LP) microgroove 33⅓ rpm vinyl phonograph discs which defined home audio for two generations.

Example of Congolese 78 rpm records
A 10-inch gramophone blank for self recording with 78 rpm, brand as material "Decelith" with special surface for hardening

Electrical recording preceded electrical home reproduction (much as digital recording preceded digital home reproduction), because of the initial high cost of the electronics. In 1925, the Victor company introduced the groundbreaking Victor Orthophonic Victrola, an acoustical record player that was specifically designed to play electrically recorded discs, as part of a line that also included electrically-reproducing "Electrolas." The acoustical Orthophonics ranged in price from US$95 to $300 (about US$1140 to $3600 in year 2007 dollars), depending on cabinetry; by comparison, the cheapest Electrola cost US$650 (about US$7500 in year 2007 dollars).

The Orthophonic had an interior folded exponential horn, a sophisticated design informed by impedance-matching and transmission-line theory, and designed to provide a relatively flat frequency response. Its first public demonstration was front-page news in the New York Times, which reported that:

"The audience broke into applause... John Philip Sousa : 'Gentleman , that is a band. This is the first time I have ever heard music with any soul to it produced by a mechanical talking machine.' ... The new instrument is a feat of mathematics and physics. It is not the result of innumerable experiments, but was worked out on paper in advance of being built in the laboratory.... The new machine has a range of from 100 to 5,000 frequencies, or five and a half octaves.... The 'phonograph tone' is eliminated by the new recording and reproducing process."

Gradually, electrical reproduction entered the home. The clockwork motor was replaced by an electric motor; the 'needle' and diaphragm (the 'sound box') was replaced with a 'pickup' using either a steel or sapphire stylus, and a transducer to convert the groove vibrations into an electrical signal. The exponential horn became an amplifier and loudspeaker.

78 rpm materials

Early disc records were made of various materials including hard rubber. From 1897 onwards, earlier materials were largely replaced by a rather brittle formula of 25% shellac, a filler of a cotton compound similar to manila paper, powdered slate, and a small amount of a wax lubricant. The mass production of shellac records began in 1898 in Hanover, Germany, and continued until the end of the 78-rpm format in the late 1950s. "Unbreakable" records, usually of celluloid on a pasteboard base, were made from 1904 onwards, but they suffered from an exceptionally high level of surface noise. "Unbreakable" records could be bent, broken, or otherwise damaged; but not nearly as easily as shellac records. Vinyl was first tried out as a 78 rpm record material in 1940 due to material restrictions. Decca introduced vinyl "Deccalite" 78s after the Second World War, and Victor made some vinyl 78s, but other labels would restrict vinyl production to the newer 33 and 45 formats.

78 rpm disc size

In the 1890s, the early recording formats of discs were usually seven inches (nominally 17.5 cm) in diameter. By 1910 the 10-inch (25.4 cm) record was by far the most popular standard, holding about three minutes of music or entertainment on a side. From 1903 onwards, 12-inch records (30.5 cm) were also sold commercially, mostly of classical music or operatic selections, with four to five minutes of music per side. However, other sizes did appear. An 8 inch disc with a 2 inch diameter label became popular, though short lived, in Europe. They cannot be played completely on much modern equipment because the tone arm cannot reach in far enough.

78 rpm recording time

The playing time of a phonograph record depended on the turntable speed and the groove spacing. At the beginning of the 20th century, the early discs played for two minutes, the same as early cylinder records. The 12-inch disc, introduced by Victor in 1903, increased the playing time to three and a half minutes. Because a 10-inch 78 rpm record could hold about three minutes of sound per side and the 10-inch size was the standard size for popular music, almost all popular recordings were limited to around three minutes in length.

For example, when King Oliver's Creole Jazz Band, including Louis Armstrong on his first recordings, recorded 13 sides at Gennett Records in Richmond, Indiana, in 1923, one side was 2:09 and four sides were 2:52–2:59.

By 1938, when Milt Gabler started recording on January 17 for his new label, Commodore Records, to allow longer continuous performances, he recorded some 12" records. Eddie Condon explained: "Gabler realized that a jam session needs room for development." The first two 12" recordings did not take advantage of the extra length: "Carnegie Grag" was 3:15; "Carnegie Jump", 2:41. But, at the second session, on April 30, the two 12" recordings were longer: "Embraceable You" was 4:05; "Serenade to a Shylock", 4:32.

Another way around the time limitation was to issue a selection on both sides of a single record. Vaudeville stars Gallagher and Shean, recorded "Mr. Gallagher and Mr. Shean", written by Irving and Jack Kaufman, as two-sides of a 10" 78 in 1922 for Cameo.

An obvious workaround for longer recordings was to release a set of records. The first multi-record release was in 1903, when HMV in England made the first complete recording of an opera, Verdi's Ernani, on 40 single-sided discs. In 1940, Commodore released Eddie Condon and his Band's recording of "A Good Man Is Hard to Find" in four parts, issued on both sides of two 12" 78s.

This limitation on the length of both popular-music and jazz songs persisted from 1910 until the invention of the LP, in 1948.

In popular music, this time limitation of about 3:30 on a 10" 78 rpm record meant that singers usually did not release long songs on record. One exception is Frank Sinatra's recording of Richard Rodgers's and Oscar Hammerstein II's "Soliloquy", from Carousel, made on May 28, 1946. Because it ran 7:57, longer than both sides of a standard 78 rpm 10" record, it was released on Columbia's Masterwork label (the classical division) as two sides of a 12" record. (See date.)

In the 78 era, classical-music and spoken-word items generally were released on the longer 12" 78s, about 4–5 minutes per side. For example, on June 10, 1924, four months after the February 12 premier of Rhapsody in Blue, George Gershwin recorded it with Paul Whiteman and His Orchestra. It was released on two sides of Victor 55225 and runs 8:59. Look under the title

Record albums

Such 78 rpm records were usually sold separately, in brown paper or cardboard sleeves that were sometimes plain and sometimes printed to show the producer or the retailer's name. Generally the sleeves had a circular cut-out allowing the record label to be seen. Records could be laid on a shelf horizontally or stood upright on an edge, but because of their fragility, many broke in storage.

German record company Odeon is often said to have pioneered the "album" in 1909 when it released the "Nutcracker Suite" by Tchaikovsky on 4 double-sided discs in a specially-designed package. # (It is not indicated what size the records are.) However, Deutsche Grammophon had produced an album for its complete recording of the opera Carmen in the previous year. The practice of issuing albums does not seem to have been widely taken up by other record companies for many years; however, HMV provided an album, with a pictorial cover, for the 1917 recording of The Mikado (Gilbert & Sullivan).

By about 1910 bound collections of empty sleeves with a cardboard or leather cover, similar to a photograph album, were sold as "record albums" that customers could use to store their records (the term "record album" was printed on some covers). These albums came in both 10" and 12" sizes. The covers of these bound books were wider and taller than the records inside, allowing the record album to be placed on a shelf upright, like a book, suspending the fragile records above the shelf and protecting them.

Starting in the 1930s, record companies began issuing collections of 78 rpm records by one performer or of one type of music in specially assembled albums. The result is that when the LP came along and included multiple songs, the name "album" came along too.

New sizes and materials

Both the microgroove LP 33⅓ rpm record and the 45 rpm single records are made from vinyl plastic that is flexible and unbreakable in normal use. However, the vinyl records are easier to scratch or gouge, and much more prone to warping.

In 1930, RCA Victor launched the first commercially available vinyl long-playing record, marketed as "Program Transcription" discs. These revolutionary discs were designed for playback at 33⅓ rpm and pressed on a 30 cm diameter flexible plastic disc. In Roland Gelatt's book The Fabulous Phonograph, the author notes that RCA Victor's early introduction of a long-play disc was a commercial failure for several reasons including the lack of affordable, reliable consumer playback equipment and consumer wariness during the Great Depression.

There was also a small batch of "longer playing" records issued in the very early 1930s.

However, vinyl's lower surface noise level than shellac was not forgotten, nor was its durability. In the late '30s, radio commercials and pre-recorded radio programs being sent to disc jockeys started being stamped in vinyl, so they would not break in the mail. In the mid-1940s, special DJ copies of records started being made of vinyl also, for the same reason. These were all 78 rpm. During and after World War II when shellac supplies were extremely limited, some 78 rpm records were pressed in vinyl instead of shellac, particularly the six-minute 12-inch (30 cm) 78 rpm records produced by V-Disc for distribution to US troops in World War II. In the '40s, radio transcriptions, which were usually on 16-inch records, but sometimes 12 inch, were always made of vinyl, but cut at 33 1/3 rpm. Shorter transcriptions were often cut at 78 rpm.

Beginning in 1939, Dr. Peter Goldmark and his staff at Columbia Records undertook efforts to address problems of recording and playing back narrow grooves and developing an inexpensive, reliable consumer playback system. In 1948, the 12-inch (30 cm) Long Play (LP) 33⅓ rpm microgroove record album was introduced by the Columbia Record Company at a New York press conference on June 21, 1948. In February 1949, RCA Victor released the first 45 rpm single, 7 inches in diameter, with a large center hole to accommodate an automatic play mechanism on the changer, so a stack of singles would drop down one record at a time automatically after each play. Early 45 rpm records were made from either vinyl or polystyrene. They had a playing time of eight minutes.

On a small number of early phonograph systems and radio transcription discs, as well as some entire albums the direction of the groove is reversed, beginning near the center of the disc and leading to the outside. A small number of records (such as Jeff Mills' Apollo EP or the Hidden In Plainsight EP from Detroit's Underground Resistance) were manufactured with multiple separate grooves to differentiate the tracks (usually called 'NSC-X2').

Speeds

The earliest rotation speeds varied widely. Most records made in 1900–1925 were recorded at 74–82 revolutions per minute (rpm). However a few unusual systems were deployed. The Dutch Philips company introduced records whose rotational speed varied such that the reproducing "needle" ran at a constant linear velocity (CLV) in the groove. These records, also unusually, played from the inside to the outside. Both of these features were to be emulated by the modern day Compact Disc. The London Science Museum displays a Philips CLV record marked as "Speed D".

In 1925, 78.26 rpm was chosen as the standard because of the introduction of the electrically powered synchronous turntable motor. This motor ran at 3600 rpm with a 46:1 gear ratio which produced 78.26 rpm. In parts of the world that used 50 Hz current, the standard was 77.92 rpm (3000 rpm with a 38.5:1 ratio), which was also the speed at which a strobe disc with 77 lines would "stand still" in 50 Hz light (92 lines for 60Hz). After World War II these records were retroactively known as 78s, to distinguish them from other newer disc record formats. Earlier they were just called records, or when there was a need to distinguish them from cylinders, disc records.

Columbia and RCA's competition extended to equipment. Some turntables included spindle size adapters, but other turntables required snap-in inserts like this one to adapt RCA's larger 45 rpm spindle size to the smaller spindle size available on nearly all turntables. Shown is one popular design in use for many years.

After World War II, two new competing formats came on to the market and gradually replaced the standard "78": the 33⅓ rpm (often just referred to as the 33 rpm), and the 45 rpm (see above). The 33⅓ rpm LP (for "long play") format was developed by Columbia Records and marketed in 1948. RCA Victor developed the 45 rpm format and marketed it in 1949, in response to Columbia. Both types of new disc used narrower grooves, intended to be played with smaller styli—typically 0.001 inches (25 µm) wide, compared to 0.003 inches (76 µm) for a 78—so the new records were sometimes called Microgroove. In the mid-1950s all record companies agreed to a common recording standard called RIAA equalization. Prior to the establishment of the standard each company used its own preferred standard, requiring discriminating listeners to use pre-amplifiers with multiple selectable equalization curves.

It should be noted that while stroboscopic speed checkers can be used to correctly adjust a turntable speed to 45 rpm in the US where the stroboscope disc is illuminated by a lamp run from a 60 Hz supply, most strobes are slightly inaccurate where there is a 50 Hz supply. Using a conventional single segment per pulse, the nearest that can be achieved is 45.112+ rpm which requires a disc with 133 segments. The difference amounts to the record sounding sharp by about a twenty fifth of a semitone (i.e. practically unnoticeable). To construct a 50 Hz stroboscope disc that appears stationary at exactly 45 rpm is possible, and would require 400 segments advancing by 3 segments on each pulse of light.

A number of recordings were pressed at 16⅔ rpm (usually a 7-inch disc, visually identical to a 45 rpm single). Peter Goldmark, the man who developed the 33⅓ rpm record, developed the Highway Hi-Fi 16⅔ rpm record to be played in Chrysler automobiles, but poor performance of the system and weak implementation by Chrysler and Columbia led to the demise of the 16⅔ rpm records. Subsequently, the 16⅔ rpm speed was used for radio transcription discs or narrated publications for the blind and visually impaired, and were never widely commercially available, although it was common to see new turntable models with a 16 rpm speed setting produced as late as the 1970s.

The older 78 format continued to be mass produced alongside the newer formats into the 1950s, and in a few countries, such as India, into the 1960s. For example, Columbia records last reissue of Frank Sinatra songs on 78 rpm records was an album called "Young at Heart", issued November 1, 1954. As late as the 1970s, some children's records were released at the 78 rpm speed.

The commercial rivalry between RCA Victor and Columbia Records led to RCA Victor's introduction of what it had intended to be a competing vinyl format, the 7-inch (175 mm) 45-rpm disc. For a two-year period from 1948 to 1950, record companies and consumers faced uncertainty over which of these formats would ultimately prevail in what was known as the "War of the Speeds". (See also format war.) In 1949 Capitol and Decca adopted the new LP format and RCA gave in and issued its first LP in January 1950. But the 45 rpm size was gaining in popularity, too, and Columbia issued its first 45s in February 1951. By 1954, 200 million 45s had been sold.

Eventually the 12-inch (300 mm) 33⅓ rpm LP prevailed as the predominant format for musical albums and the 10" LP were no longer issued. The last Columbia records reissue of any Frank Sinatra songs on a 10" LP record was an album called "Hall of Fame", CL 2600, issued October 26, 1956, containing six songs, one each by Tony Bennett, Rosemary Clooney, Johnny Ray, Frank Sinatra, Doris Day, and Frankie Laine. The 7-inch (175 mm) 45-rpm disc or "single" established a significant niche for shorter duration discs, typically containing one song on each side. The 45 rpm discs typically emulated the playing time of the former 78 rpm discs, while the 12" LP discs provided up to one half hour of time per side. The amount of music per LP varied from label to label and possibly from performer to performer. Frank Sinatra's "A Swinging Affair", a monaural album, contained 15 songs and ran 50 minutes. Other albums by other performers could run as little as 30 or 35 minutes. After the introduction of stereophonic recording, record times dropped because, presumably, the early stereo groove was wider than the monaural groove.

A stroboscopic disc for 33⅓ and 45 rpm (actually 44.77 rpm as it has the wrong number of segments on the 45 ring) at 50 Hz

The 45 rpm discs also came in a variety known as Extended play (EP) which achieved up to 10–15 minutes play at the expense of attenuating (and possibly compressing) the sound to reduce the width required by the groove. EP discs were generally used to reissue LP albums on the smaller format for those people who had only 45 rpm players. LP albums could be purchased 1 EP at a time, with four songs per EP, or in a boxed set with 3 EPs or 12 songs. The large center hole on 45s allows for easier handling by jukebox mechanisms. EPs were generally discontinued by the late 1950s as three- and four-speed record players replaced the individual 45 players. One indication of the decline of the 45 rpm EP is that the last Columbia records reissue of Frank Sinatra songs on 45 rpm EP records, called "Frank Sinatra",(Columbia B-2641) was issued December 7, 1959.

In the late 1940s and early 1950s, 45 rpm–only players that lacked speakers and plugged into a jack on the back of a radio were widely available. Eventually, they were replaced by the three–speed record player.

From the mid-1950s through the 1960s, in the U.S. the common home "record player" or "stereo" (after the introduction of stereo recording) would typically have had these features: a three- or four-speed player (78, 45, 33⅓, and sometimes 16⅔ rpm); with changer, a tall spindle that would hold several records and automatically drop a new record on top of the previous one when it had finished playing, a combination cartridge with both 78 and microgroove stylii and a way to flip between the two; and some kind of adapter for playing the 45s with their larger center hole. The adapter could be a small solid circle that fit onto the bottom of the spindle (meaning only one 45 could be played at a time) or a larger adaptor that fit over the entire spindle, permitting a stack of 45s to be played.

RCA 45s were also adapted to the smaller spindle of an LP player with a plastic snap-in insert known as a "spider". These inserts, commissioned by RCA president David Sarnoff and invented by Thomas Hutchison , were prevalent starting in the 1960s, selling in the tens of millions per year during the 45's heyday. In countries outside of the US, 45s often had the smaller album-sized holes (ie Australia and New Zealand), or otherwise a pseudo-spider was "built-in" to the record, which could be punched out if desired (ie the United Kingdom, especially before the 1970s).

Deliberately playing or recording records at a higher speed gave an antic quirkiness to voices; doing so at a slower speed changed music and voice to an ominous, growling tone. Canadian musician Nash the Slash also took advantage of this speed/tonal effect with his 1981 12-inch disc Decomposing, which featured four instrumental tracks that were engineered to play at any speed (with the playing times listed for 33⅓, 45 and 78 rpm playback).

Sound enhancements

As the LP became established as the dominant size for longer recordings, several developments were made to enhance the sound.

High fidelity

The first of these was the attempt to develop high fidelity, or hi-fi, sound. People who were concerned with hearing all the quality sound now embedded in the new LPs began to buy separate turntables, amplifiers, speakers and woofers to get the best sound possible. Stan Freberg satirized these fans in his 1956 radio show with a skit about a man who turned his whole house into a speaker.

Stereo sound

In 1958 the first stereo two-channel records were issued—by Audio Fidelity in the USA and Pye in Britain, using the Westrex "45/45" single-groove system. While the stylus moves horizontally when reproducing a monophonic disk recording, on stereo records the stylus moves vertically as well as horizontally.

rill with sound only on left channel

One could envision a system in which the left channel was recorded laterally, as on a monophonic recording, with the right channel information recorded with a "hill-and-dale" vertical motion; such systems were proposed but not adopted, due to their incompatibility with existing phono pickup designs (see below). In the Westrex system, each channel drives the cutting head at a 45 degree angle to the vertical. During playback the combined signal is sensed by a left channel coil mounted diagonally opposite the inner side of the groove, and a right channel coil mounted diagonally opposite the outer side of the groove.

It is helpful to think of the combined stylus motion in terms of the vector sum and difference of the two stereo channels. Effectively, all horizontal stylus motion conveys the L+R sum signal, and vertical stylus motion carries the L-R difference signal. The advantages of the 45/45 system are:

  • greater compatibility with monophonic recording and playback systems. A monophonic cartridge will reproduce an equal blend of the left and right channels instead of reproducing only one channel. (However many monophonic styli would damage a stereo groove, leading to the common recommendation to never use a mono cartridge on a stereo record.) Conversely, a stereo cartridge reproduces the lateral grooves of monophonic recording equally through both channels, rather than one channel.
  • a more balanced sound, because the two channels have equal fidelity (rather than providing one higher-fidelity laterally recorded channel and one lower-fidelity vertically recorded channel);
  • higher fidelity in general, because the "difference" signal is usually of low power and thus less affected by the intrinsic distortion of hill-and-dale recording.

This system was invented by Alan Blumlein of EMI in 1931 and patented the same year. EMI cut the first stereo test discs using the system in 1933. It was not used commercially until a quarter of a century later.

Stereo sound provides a more natural listening experience where the spatial location of the source of a sound is, at least in part, reproduced.

Other enhancements

Under the direction of C. Robert Fine, Mercury Records initiated a minimalist single microphone monaural recording technique in 1951. The first record, Kubelik/Chicago's performance of "Pictures at an Exhibition" was described as "being in the living presence of the orchestra" by The New York Times music critic. The series of records was then named “Mercury Living Presence”. In 1955 Mercury began three-channel stereo recordings, still based on the principle of the single microphone. The center (single) microphone was of paramount importance, with the two side mics adding depth and space. Record masters were cut directly from a three-track to two-track mixdown console, with all editing of the master tapes done on the original three-tracks. In 1961 Mercury enhanced this technique with three-microphone stereo recordings using 35 mm magnetic film instead of half-inch tape for recording. The greater thickness and width of 35 mm magnetic film prevented tape layer print-through and pre-echo and gained extended frequency range and transient response. The Mercury Living Presence recordings were remastered to CD in the 1990s by the original producer, using the same method of 3-to-2 mix directly to the master recorder.

The development of quadraphonic records was announced in 1971. These recorded four separate sound signals. This was achieved on the two stereo channels by electronic matrixing, where the additional channels were combined into the main signal. When the records were played, phase-detection circuits in the amplifiers were able to decode the signals into four separate channels. There were two main systems of matrixed quadraphonic records produced, confusingly named SQ (by CBS) and QS (by Sansui). They proved commercially unsuccessful, but were an important precursor to later "surround sound" systems, as seen in SACD and home cinema today. A different format, CD-4 (not to be confused with compact disc), by RCA, encoded rear channel information on an ultrasonic carrier, which required a special wideband cartridge to capture it on carefully-calibrated pickup arm/turntable combinations. Typically the high frequency information inscribed onto these LPs wore off after only a few playings, and CD-4 was even less successful than the two matrixed formats.

In the late 1970s and 1980s, a method to improve the dynamic range of mass produced records involved highly advanced disc cutting equipment. These techniques, marketed as the CBS DisComputer and Teldec Direct Metal Mastering, were used to reduce inner-groove distortion. RCA Victor introduced another system to boost dynamic range and achieve a groove with less surface noise under the commercial name of Dynagroove. Two main elements were combined: another disk material with less surface noise in the groove and dynamic expansion for masking background noise. Sometimes this was called "diaphragming" the source material and not favoured by some music lovers for its unnatural side effects. Both elements were reflected in the brandname of Dynagroove, described elsewhere in more detail. Furthermore it used advanced forward looking steering on track distance with respect to volume of sound and position on the disk. Tracks were close to each other with lower volumes and farther away with loud passages. Also the higher track density at lower volumes enabled disk recordings to end farther away from the inner circle than usual, helping to reduce endtrack distortion even further.

Also in the late 1970s, "direct-to-disc" records were produced, aimed at an audiophile niche market. These completely bypassed the use of magnetic tape in favor of a "purist" transcription directly to the master lacquer disc. Also during this period, "half-speed mastered" and "original master" records were released, using expensive state-of-the-art technology. A further late 1970s development was the Disco Eye-Cued system used mainly on Motown 12-inch singles released between 1978 and 1980. The introduction, drum-breaks or choruses of a track were indicated by widely separated grooves, giving a visual clue to DJs mixing the records. The appearance of these records is similar to an LP, but they only contain one track each side.

The early 1980s saw the introduction of "dbx-encoded" records, again for the audiophile niche market. These were completely incompatible with standard record playback preamplifiers, relying on the dbx compandor encoding/decoding scheme to greatly increase dynamic range (dbx encoded disks were recorded with the dynamic range compressed by a factor of two in dB: quiet sounds were meant to be played back at low gain and loud sounds were meant to be played back at high gain, via automatic gain control in the playback equipment; this reduced the effect of surface noise on quiet passages). A similar and very short lived scheme involved using the CBS-developed "CX" noise reduction encoding/decoding scheme.

Laser turntable

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (August 2008) (Learn how and when to remove this message)
Main article: Laser turntable

ELPJ, a Japanese-based company, has developed a player that uses a laser instead of a stylus to read vinyl discs. In theory the laser turntable eliminates the possibility of scratches and attendant degradation of the sound, but its expense limits use primarily to digital archiving of analog records. Various other laser-based turntables were tried during the 1990s, but while a laser reads the groove very accurately, since it does not touch the record, the dust that vinyl naturally attracts due to static charge is not cleaned from the groove, worsening sound quality in casual use compared to conventional stylus playback.

Formats

The protective cover of the Voyager Golden Record, containing symbolic information on how it is to be played.
A 7-inch 45-rpm EP.

Common formats

Diameter Revolutions per minute Time duration
12 in. (30 cm) 33 1/3 rpm 45 min Long play (LP)
12 in. (30 cm) 45 rpm 12-inch single, Maxi Single, and Extended play (EP)
10 in. (25 cm) 33 rpm Long play (LP)
10 in. (25 cm) 78 rpm 3 minutes
7 in. (17.5 cm) 45 rpm Single
7 in. (17.5 cm) 45 rpm Extended play (EP)
7 in. (17.5 cm) 33 1/3 rpm Often used for children's records in the 1960s and 1970s.

Note: Before the early 1950s, the 33 1/3 rpm LP was most commonly found in a 10-inch (25 cm) format. The 10-inch format disappeared from United States stores around 1950, but remained a common format in some markets until the mid-1960s.

Less common formats

Main article: Unusual types of gramophone records

Structure

The normal commercial disc is engraved with two sound-bearing concentric spiral grooves, one on each side of the disc, running from the outside edge towards the centre. The last part of the spiral meets an earlier part to form a circle. The sound is encoded by fine variations in the edges of the groove that cause a stylus (needle) placed in it to vibrate at acoustic frequencies when the disc is rotated at the correct speed. Generally, the outer and inner parts of the groove bear no intended sound (at least one exception is Split Enz's Mental Notes).

Since the late 1910s, both sides of the record have been used to carry the grooves. Occasionally, records were issued in the 1920s with a recording on only one side. The recording is played back by rotating the disc clockwise at a constant rotational speed with a stylus (needle) placed in the groove, converting the vibrations of the stylus into an electric signal (see magnetic cartridge), and sending this signal through an amplifier to loudspeakers.

The majority of non–78 rpm records are pressed on black vinyl. The colouring material used to blacken the transparent PVC plastic mix is carbon black. Carbon black increases the strength of the disc and renders it opaque. Polystyrene is often used for 7-inch records

Some records are pressed on coloured vinyl or with paper pictures embedded in them ("picture discs"). Certain 45-rpm RCA or RCA Victor "Red Seal" records used red translucent vinyl for extra "Red Seal" effect. During the 1980s there was a trend for releasing singles on coloured vinyl — sometimes with large inserts that could be used as posters. This trend has been revived recently with 7-inch singles.

Vinyl record standards for the United States follow the guidelines of the Recording Industry Association of America (RIAA). The inch dimensions are nominal, not precise diameters. The actual dimension of a 12-inch record is 302 mm (11.89 in), for a 10-inch it is 250 mm (9.84 in), and for a 7-inch it is 175 mm (6.89 in).

Records made in other countries are standardized by different organizations, but are very similar in size. The record diameters are typically 300 mm, 250 mm and 175 mm.

There is an area about 6 mm (0.25 in) wide at the outer edge of the disk, called the lead-in where the groove is widely spaced and silent. This section allows the stylus to be dropped at the start of the record groove, without damaging the recorded section of the groove.

Between each track on the recorded section of an LP record, there is usually a short gap of around 1 mm (0.04 in) where the groove is widely spaced. This space is clearly visible, making it easy to find a particular track.

Towards the label centre, at the end of the groove, there is another wide-pitched section known as the lead-out. At the very end of this section, the groove joins itself to form a complete circle, called the lock groove; when the stylus reaches this point, it circles repeatedly until lifted from the record. On some recordings (for example Sgt. Pepper's Lonely Hearts Club Band by The Beatles and Atom Heart Mother by Pink Floyd), the sound continues on the lock groove, which gives a strange repeating effect. Automatic turntables rely on the position or angular velocity of the arm, as it reaches these more widely spaced grooves, to trigger a mechanism that raises the arm and moves it out of the way of the record.

Record label area

The catalog number and stamper ID is written or stamped in the space between the groove in the lead-out on the master disc, resulting in visible recessed writing on the final version of a record. Sometimes the cutting engineer might add handwritten comments or their signature, if they are particularly pleased with the quality of the cut.

When auto-changing turntables were commonplace, records were typically pressed with a raised (or ridged) outer edge and a raised label area. This would allow records to be stacked onto each other, gripping each other without the delicate grooves coming into contact, thus reducing the risk of damage. Auto changing turntables included a mechanism to support a stack of several records above the turntable itself, dropping them one at a time onto the active turntable to be played in order. Many longer sound recordings, such as complete operas, were interleaved across several 10-inch or 12-inch discs for use with auto-changing mechanisms, so that the first disk of a three-disk recording would carry sides 1 and 6 of the program, while the second disk would carry sides 2 and 5, and the third, sides 3 and 4, allowing sides 1, 2, and 3 to be played automatically; then the whole stack reversed to play sides 4, 5, and 6.

Vinyl quality

Magnified grooves. Dust can be spotted. Red lines mark one millimeter

The sound quality and durability of vinyl records is highly dependent on the quality of the vinyl. During the early 1970s, as a cost-cutting move towards use of lightweight, flexible vinyl pressings, much of the industry adopted a technique of reducing the thickness and quality of vinyl used in mass-market manufacturing, marketed by RCA Victor as the "Dynaflex" (125 g) process, considered inferior by most record collectors. Most vinyl records are pressed from a mix of seventy per cent virgin vinyl and thirty per cent recycled vinyl.

New "virgin" or "heavy/heavyweight" (180–220 g) vinyl is commonly used for modern "audiophile" vinyl releases in all genres. Many collectors prefer to have 180 g vinyl albums, and they have been reported to have a better sound than normal vinyl. These albums tend to withstand the deformation caused by normal play better than regular vinyl . 180 g vinyl is more expensive to produce only because it uses more vinyl. Manufacturing processes are identical regardless of weight. In fact, pressing lightweight records requires more care.

Since most vinyl records contain up to thirty per cent recycled vinyl, impurities can be accumulated in the record, causing a brand new album to have audio artifacts like clicks and pops. Virgin vinyl means that the album is not from recycled plastic, and will theoretically be devoid of these impurities. In practice, this depends on the manufacturer's quality control.

The orange peel effect on vinyl records is caused by worn molds. Rather than having the proper mirror-like finish, the surface of the record will have what looks like an orange peel texture. This introduces noise into the record, particularly in the lower frequency range. It should be noted that with direct metal mastering (DMM) the master disc is cut on a copper-coated disc which can also have a minor "orange peel" effect on the disc itself. As this "orange peel" originates in the master rather than being introduced in the pressing stage, there is no ill-effect as there is no physical distortion of the groove.

While all vinyl records are pressed from metal discs known as 'stampers', a technique known as lathe-cutting is used to create the original discs. A lathe is used to cut microgrooves into an aluminum disc coated with nitro-cellulose lacquer. This lacquer disc is then electroplated with nickel to form a negative known as a 'master' disc, which has a protrusion rather than a groove. The lacquer disc is destroyed when the nickel impression is separated. This master disc is then electroplated with nickel to form a positive disc known as a 'mother'. Many mothers can be grown from a single master before the master deteriorates beyond use. In their own turn the mothers are nickel plated to produce more negative discs known as 'stampers'. Again a single mother can grow many stampers before they deteriorate beyond use. It is these stampers that are then used to mold the final vinyl discs. In this way several million vinyl discs can be produced from a single lacquer original. For production of discs where a relatively small quantity is required, the first nickel negative grown from the lacquer original can be used as a stamper. Production by this latter process (known as the 'one-step-process') is limited to a few hundred vinyl discs or more if the stamper holds out and the quality of the vinyl is high.

Limitations

Shellac

Shellac 78s are brittle, and must be handled carefully. In the event of a 78 breaking, the pieces might remain loosely connected by the label and still be playable if the label holds them together, although there is a loud "pop" with each pass over the crack, and breaking of the stylus is likely.

Breakage was very common in the shellac era. In the 1934 novel, Appointment in Samarra, the protagonist "broke one of his most favorites, Whiteman's Lady of the Evening ... He wanted to cry but could not." A poignant moment in J. D. Salinger's 1951 novel The Catcher in the Rye occurs after the adolescent protagonist buys a record for his younger sister but drops it and "it broke into pieces ... I damn near cried, it made me feel so terrible." A sequence where a school teacher's collection of 78 rpm jazz records is smashed by a group of rebellious students is a key moment in the film Blackboard Jungle.

Another problem with Shellac was that the size of the disks tended to be larger due to the fact that it was limited to 80-100 groove walls per inch before the risk of groove collapse became too high, whereas vinyl could have up to 260 groove walls per inch.

Vinyl

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (May 2007) (Learn how and when to remove this message)
Single-Record (45 rpm)

Vinyl records do not break easily, but the soft material is easily scratched. Vinyl readily acquires a static charge, attracting dust that is difficult to remove completely. Dust and scratches cause audio clicks and pops. In extreme cases, they can cause the needle to skip over a series of grooves, or worse yet, cause the needle to skip backwards, creating a "locked groove" that repeats over and over. Locked grooves were not uncommon and were even heard occasionally in broadcasts.

Vinyl records can be warped by heat, improper storage, or manufacturing defects such as excessively tight plastic shrinkwrap on the album cover. A small degree of warp was common, and allowing for it was part of the art of turntable and tonearm design. "Wow" (once-per-revolution pitch variation) could result from warp, or from a spindle hole that was not precisely centered. Standard practice for LPs, which were more expensive than singles, was to include the LP in a plastic lined inner cover. This, if placed within the outer cardboard cover so that the opening was entirely within the outer cover, was said to reduce ingress of dust onto the record surface. Singles, with rare exceptions, had simple paper covers with no inner cover.

There is controversy about the relative quality of CD sound and LP sound when the latter is heard under the very best conditions (see Analog vs. Digital sound argument).

A further limitation of the record is that with a constant rotational speed, the quality of the sound may differ across the width of the record because the inner groove modulations are more compressed than those of the outer tracks. The result is that inner tracks have distortion that can be noticeable at higher recording levels.

7-inch singles were typically poorer quality for a variety of the reasons mentioned above, and in the 1970s the 12-inch single (sometimes referred to as a "doughnut"), manufactured at both 33 1/3 and 45 rpm, became popular for DJ use and for fans and collectors.

Another problem arises because of the geometry of the tonearm. Master recordings are cut on a recording lathe where a sapphire stylus moves radially across the blank, suspended on a straight track and driven by a lead screw. Most turntables use a pivoting tonearm, introducing side forces and pitch and azimuth errors, and thus distortion in the playback signal. Various mechanisms were devised in attempts to compensate, with varying degrees of success. See more at phonograph.

Frequency response and noise

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (August 2008) (Learn how and when to remove this message)

In 1925, electric recording extended the recorded frequency range from acoustic recording (168–2000 Hz) by 2½ octaves to 100–5000 Hz. Even so, these early electronically recorded records used the exponential-horn phonograph (see Orthophonic Victrola) for reproduction.

The frequency response of vinyl records may be degraded by frequent playback if the cartridge is set to track too heavily, or the stylus is not compliant enough to trace the high frequency grooves accurately, or the cartridge/tonearm is not properly aligned. The RIAA has suggested the following acceptable losses: down to 20 kHz after one play, 18 kHz after three plays, 17 kHz after five, 16 kHz after eight, 14 kHz after fifteen, 13 kHz after twenty five, 10 kHz after thirty five, and 8 kHz after eighty plays. While this degradation is possible if the record is played on improperly set up equipment, many collectors of LPs report excellent sound quality on LPs played many more times when using care and high quality equipment. This rapid sound degradation is not usually typical on modern Hi-Fi equipment with a properly balanced tonearm and well balanced low-mass stylus.

CD-4 LPs contain two sub-carriers, one in the left groove wall and one in the right groove wall. These sub-carriers use special FM-PM-SSBFM (Frequency Modulation-Phase Modulation-Single Sideband Frequency Modulation) and have signal frequencies that extend to 45 kHz. It should be noted that CD-4 sub-carriers could be played with any type stylus as long as the pickup cartridge had CD-4 frequency response. The recommended Stylus for CD-4 as well as regular stereo records was a line contact or Shibata type.

Gramophone sound suffers from rumble, low-frequency (below about 30 Hz) mechanical noise generated by the motor bearings and picked up by the stylus. Equipment of modest quality is relatively unaffected by these issues, as the amplifier and speaker will not reproduce such low frequencies, but high-fidelity turntable assemblies need careful design to minimize audible rumble.

Room vibrations will also be picked up if the pedestal—turntable—pickup arm—stylus system is not well damped.

Tonearm skating forces and other perturbations are also picked up by the stylus. This is a form of frequency multiplexing as the "control signal" (restoring force) used to keep the stylus in the groove is carried by the same mechanism as the sound itself. Subsonic frequencies below about 20 Hz in the audio signal are dominated by tracking effects, which is one form of unwanted rumble ("tracking noise") and merges with audible frequencies in the deep bass range up to about 100 Hz. High fidelity sound equipment can reproduce tracking noise and rumble. During a quiet passage, woofer speaker cones can sometimes be seen to vibrate with the subsonic tracking of the stylus, at frequencies as low as about 0.5 Hz (the frequency at which a 33 1/3 rpm record turns on the turntable). Another reason for very low frequency material can be a warped disk: its undulations produce frequencies of only a few hertz and presentday amplifiers have large power bandwidths. For this reason, many stereo receivers contained a switchable subsonic filer. Some subsonic content is directly out of phase in each channel. If played back on a mono subwoofer system, the noise will cancel, significantly reducing the amount of rumble that is reproduced.

At high audible frequencies, hiss is generated as the stylus rubs against the vinyl, and from dirt and dust on the vinyl. Noise can be reduced somewhat by cleaning the record prior to playback.

Another method, introduced by the Lenco company is playing the disk "wet". Using a special dispenser the groove is wetted ahead of the stylus passing by and dries up afterwards. This certainly reduces hiss, but when it became clear that any disk once played wet, should forever be played this way because of residue left behind, people did not change over in great numbers. With normal cleaning this problem does not occur (this also seems to remove Lenco residue if present).

Equalization

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (August 2008) (Learn how and when to remove this message)

Due to recording mastering and manufacturing limitations, both high and low frequencies were removed from the first recorded signals by various formulae. With low frequencies, the stylus must swing a long way from side to side, requiring the groove to be wide, taking up more space and limiting the playing time of the record. At high frequencies noise is significant. These problems can be compensated for by using equalization to an agreed standard. This simply means reducing the amplitude at low-frequencies, thus reducing the groove width required, and increasing the amplitude at high frequencies. The playback equipment boosts bass and cuts treble in a complementary way. The result should be that the sound is perceived to be without change, thus more music will fit the record, and noise is reduced.

The agreed standard has been RIAA equalization since 1952, implemented in 1955. Prior to that, especially from 1940, some 100 formulae were used by the record manufacturers.

In 1926 it was disclosed by Joseph P. Maxwell and Henry C. Harrison from Bell Telephone Laboratories that the recording pattern of the Western Electric (W. E.) "rubber line" magnetic disc cutter had a constant velocity characteristic. This meant that as frequency increased in the treble, recording amplitude decreased. Conversely, in the bass as frequency decreased, recording amplitude increased. Therefore, it was necessary to attenuate the bass frequencies below about 250 Hz, the bass turnover point, in the amplified microphone signal fed to the recording head. Otherwise, bass modulation became excessive and overcutting took place into the next record groove. When played back electrically with a magnetic pickup having a smooth response in the bass region, a complementary boost in amplitude at the bass turnover point was necessary. G. H. Miller in 1934 reported that when complementary boost at the turnover point was used in radio broadcasts of records, the reproduction was more realistic and many of the musical instruments stood out in their true form.

West in 1930 and later P. G. H. Voight (1940) showed that the early Wente-style condenser microphones contributed to a 4 to 6 dB midrange brilliance or pre-emphasis in the recording chain. This meant that the electrical recording characteristics of W. E. licensees such as Columbia Records and Victor Talking Machine Company in the 1925 era had a higher amplitude in the midrange region. Brilliance such as this compensated for dullness in many early magnetic pickups having drooping midrange and treble response. As a result, this practice was the empirical beginning of using pre-emphasis above 1,000 Hz in 78 rpm and 33 1/3 rpm records.

Over the years a variety of record equalization practices emerged and there was no industry standard. For example, in Europe recordings for years required playback with a bass turnover setting of 250–300 Hz and a treble rolloff at 10,000 Hz ranging from 0 to −5 dB or more. In the United States there were more varied practices and a tendency to use higher bass turnover frequencies such as 500 Hz as well as a greater treble rolloff like −8.5 dB and even more to record generally higher modulation levels on the record.

Evidence from the early technical literature concerning electrical recording suggests that it wasn't until the 1942–1949 period that there were serious efforts to standardize recording characteristics within an industry. Heretofore, electrical recording technology from company to company was considered a proprietary art all the way back to the 1925 W. E. licensed method used by Columbia and Victor. For example, what Brunswick-Balke-Collender (Brunswick Corporation) did was different from the practices of Victor.

Broadcasters were faced with having to adapt daily to the varied recording characteristics of many sources: various makers of "home recordings" readily available to the public, European recordings, lateral cut transcriptions, and vertical cut transcriptions. Efforts were started in 1942 to standardize within the National Association of Broadcasters (NAB), later known as the National Association of Radio and Television Broadcasters (NARTB). The NAB, among other items, issued recording standards in 1949 for laterally and vertically cut records, principally transcriptions. A number of 78 rpm record producers as well as early LP makers also cut their records to the NAB/NARTB lateral standard.

The lateral cut NAB curve was remarkably similar to the NBC Orthacoustic curve which evolved from practices within the National Broadcasting Company since the mid-1930s. Empirically, and not by any formula, it was learned that the bass end of the audio spectrum below 100 Hz could be boosted somewhat to override system hum and turntable rumble noises. Likewise at the treble end beginning at 1,000 Hz, if audio frequencies were boosted by 16 dB at 10,000 Hz the delicate sibilant sounds of speech and high overtones of musical instruments could survive the noise level of cellulose acetate, lacquer/aluminum, and vinyl disc media. When the record was played back using a complementary inverse curve, signal to noise ratio was improved and the programming sounded more life-like.

When the Columbia LP was released in June 1948, the developers subsequently published technical information about the 33 1/3 rpm microgroove long playing record. Columbia disclosed a recording characteristic showing that it was like the NAB curve in the treble, but had more bass boost or pre-emphasis below 200 Hz. The authors disclosed electrical network characteristics for the Columbia LP curve. This was the first such curve based on formulae.

In 1951 at the beginning of the post-World War II high fidelity (hi-fi) popularity, the Audio Engineering Society (AES) developed a standard playback curve. This was intended for use by hi-fi amplifier manufacturers. If records were engineered to sound good on hi-fi amplifiers using the AES curve, this would be a worthy goal towards standardization. This curve was defined by the time constants of audio filters and had a bass turnover of 400 Hz and a 10,000 Hz rolloff of −12 dB.

RCA Victor and Columbia were in a "market war" concerning which recorded format was going to win: the Columbia LP versus the RCA Victor 45 rpm disc (released in February 1949). Besides also being a battle of disc size and record speed, there was a technical difference in the recording characteristics. RCA Victor was using "New Orthophonic" whereas Columbia was using the LP curve.

Ultimately the New Orthophonic curve was disclosed in a publication by R. C. Moyer of RCA Victor in 1953. He traced RCA Victor characteristics back to the W. E. "rubber line" recorder in 1925 up to the early 1950s laying claim to long-held recording practices and reasons for major changes in the intervening years. The RCA Victor New Orthophonic curve was within the tolerances for the NAB/NARTB, Columbia LP, and AES curves. It eventually became the technical predecessor to the RIAA curve and superseded all other curves. By the time of the stereo LP in 1958, the RIAA curve, identical to the RCA Victor New Orthophonic curve, became standard throughout the national and international record markets.

Sound fidelity

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (August 2008) (Learn how and when to remove this message)
Enrico Caruso with phonograph

Overall sound fidelity of records produced acoustically using horns instead of microphones had a distant, hollow tone quality. Some voices and instruments recorded better than others; Enrico Caruso, famous tenor, was one popular recording artist of the acoustic era that was well matched to the recording horn. It has been asked, "Did Caruso make the phonograph or did the phonograph make Caruso?"

Delicate sounds and fine overtones were mostly lost because it took a lot of sound energy to vibrate the recording horn diaphragm and cutting mechanism. There were acoustic limitations due to mechanical resonances in both the recording and playback system. Some pictures of acoustic recording sessions show horns wrapped with tape to help mute these resonances. Even an acoustic recording played back electrically on modern equipment sounds like it was recorded through a horn, not withstanding a 50% reduction in distortion because of the modern playback. Towards the end of the acoustic era, there were many fine examples of recordings made with horns.

Electric recording which developed during the time that early radio was becoming popular (1925) benefited from the microphones and amplifiers used in radio studios. The early electric recordings were reminiscent tonally of acoustic recordings except there was more recorded bass and treble as well as delicate sounds and overtones cut on the records. This was in spite of some carbon microphones used which had resonances that colored the recorded tone. The double button carbon microphone with stretched diaphragm was a marked improvement. Alternatively, the Wente style condenser microphone used with the Western Electric (W. E.) licensed recording method had a brilliant midrange and was prone to overloading from sibilants in speech, but it was generally better at picking up sounds more accurately than carbon microphones were.

It was not unusual, however, for electric recordings to be played back on acoustic phonographs. The Victor Orthophonic phonograph was a prime example where such playback was expected. In the Orthophonic, which benefited from telephone research, the mechanical pickup head was redesigned with lower resonance than the traditional mica type. Also, a folded horn with an exponential taper was constructed inside the cabinet to provide better impedance matching to the air. As a result, playback of an Orthophonic record sounded like it was coming from a radio.

Eventually, when it was more common for electric recordings to be played back electrically in the 1930s and '40s, the overall tone was much like listening to a radio of the era. Magnetic pickups became more common and were better designed as time went on to dampen spurious resonances. Crystal pickups were also introduced as lower cost alternatives. The dynamic or moving coil microphone was introduced around 1930 and the velocity or ribbon microphone in 1932. Both of these high quality microphones became widespread in motion picture, radio, recording, and public address applications.

Over time, fidelity, dynamic and noise levels improved to the point that it was harder to tell the difference between a live performance in the studio and the recorded version. This was especially true after the invention of the variable reluctance magnetic pickup cartridge by General Electric in the 1940s when high quality cuts were played on well-designed audio systems. The Capehart radio/phonographs of the era with large diameter electrodynamic loudspeakers, though not ideal, demonstrated this quite well with "home recordings" readily available in the music stores for the public to buy.

There were important quality advances in recordings specifically made for radio broadcast. In the early 1930s Bell Telephone Laboratories and Western Electric announced the total reinvention of disc recording: the Western Electric Wide Range System, "The New Voice of Action." The intent of the new W. E. system was to improve the overall quality of disc recording and playback. The recording speed was 33 1/3 rpm, originally used in the Western Electric/ERPI movie audio disc system implemented in the early Warner Brothers' Vitaphone "talkies" of 1927.

The newly invented W. E. moving coil or dynamic microphone was part of the Wide Range System. It had a flatter audio response than the old style Wente condenser type and didn't require electronics installed in the microphone housing. Signals fed to the cutting head were pre-emphasized in the treble region to help override noise in playback. Groove cuts in the vertical plane were employed rather than the usual lateral cuts. The chief advantage claimed was more grooves per inch which could be crowded together resulting in longer playback time. Additionally, the problem of inner groove distortion which plagued lateral cuts could be avoided with the vertical cut system. Wax masters were made by flowing heated wax over a hot metal disc thus avoiding the microscopic irregularities of cast blocks of wax and the necessity of planing and polishing.

Vinyl pressings were made with stampers from master cuts that were electroplated in vacuo by means of gold sputtering. Audio response was claimed out to 8,000 Hz, later 13,000 Hz, using light weight pickups employing jeweled styli. Amplifiers and cutters both using negative feedback were employed thereby improving the range of frequencies cut and lowering distortion levels. Radio transcription producers such as World Broadcasting System and Associated Music Publishers (AMP) were the dominant licensees of the W. E. wide range system and towards the end of the 1930s were responsible for two thirds of the total radio transcription business. A quantum level of improvement had been achieved, and when these recordings are found today in good condition, it is amazing to hear what high fidelity sound was like in that era. Playback of these recordings works well using a bass turnover of 300 Hz and a 10,000 Hz rolloff of −8.5 dB.

Developmentally, much of the technology of the long playing record, successfully released by Columbia in 1948, came from wide range radio transcription practices. The use of vinyl pressings, increased length of programming, and general improvement in audio quality over 78 rpm records were the major selling points.

The complete technical disclosure of the Columbia LP by Peter C. Goldmark, Rene' Snepvangers and William S. Bachman in 1949 made it possible for a great variety of record companies to get into the business of making long playing records. The business grew like "wild fire" as did the widespread interest in high fidelity sound and the do-it-yourself market for pickups, turntables, amplifier kits, loudspeaker enclosure plans, and AM/FM radio tuners. The LP record for longer works, 45 rpm for pop songs, and FM radio became high fidelity program sources in demand. Radio listeners heard recordings broadcasted and this in turn generated more record sales. The industry flourished.

Evolutionary steps

This section possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (August 2008) (Learn how and when to remove this message)

Technology used in making recordings also developed and prospered. Basically there were ten major evolutionary steps that perfected LP production and quality during a period of approximately forty years.

  1. Electrical transcriptions and 78s were first used as sources to master LP lacquer/aluminum cuts in 1948. This was before magnetic tape was commonly employed for mastering. Variable pitch groove spacing helped enable greater recorded dynamic levels. The heated stylus improved the cutting of high frequencies. Gold sputtering in vacuo became increasingly used to make high quality matrices from the cuts to stamp vinyl records.
  2. Decca in England employed high quality wide range microphones (condensers) for the Full Frequency Range Recording (FFRR) system ca. 1949. Wax mastering was employed to produce Decca/London LPs. This created quite a bit of interest in the United States and raised overall quality expectations by customers for microgroove records.
  3. Tape recording with condenser microphones became a long used standard operating procedure in mastering lacquer/aluminum cuts. This improved the overall pickup of high quality sound and enabled tape editing. Over the years there were variations in the kinds of tape recorders used such as the width and number of tracks employed, including 35 mm magnetic film technology.
  4. Production of stereo tape masters and the stereo LP in 1958 were quantum level improvements in recording technology.
  5. Limitations in the disc cutting part of the process generated the idea of half-speed mastering in which the source tape was played at half-speed and the lacquer/aluminum disc cut at 16 2/3 rpm rather than 33 1/3 rpm.
  6. Some 12 inch LPs were cut at 45 rpm claiming better quality sound, but this practice was short-lived.
  7. Efforts were made in the 1970s to record as many as four audio channels on an LP ("Quadraphonic") by means of matrix and modulated carrier methods. This development, though another quantum level improvement, was neither a widespread success nor long lasting.
  8. There were approaches to simplify the chain of equipment in the recording process and return to live recording directly to the disc master.
  9. Some records were produced employing noise reduction systems in the tape mastering as well as in the LP itself.
  10. As video recorders became perfected technically it became possible to modify them and use analog to digital converters (codecs) for digital sound recording. This enabled tape mastering with greater dynamic range, low noise and distortion, and freedom from drop outs as well as pre- and post-echo. The digital recording was played back providing a high quality analog signal to master the lacquer/aluminum cut.

Shortcomings

At the time of the introduction of the compact disc (CD) in the mid-1980s, the stereo LP pressed in vinyl was at the high point of its development. Still, it suffered from a variety of limitations:

  • The stereo image was not made up of fully discrete Left and Right channels; each channel's signal coming out of the magnetic cartridge contained approximately 20% of the signal from the other channel. The lack of pure channel separation made for a sense of diminished soundstage.
  • Thin, closely-spaced spiral groove walls that allowed for increased playing time on a 33 rpm microgroove LP led to a tinny pre-echo warning of upcoming loud sounds. The hot tip of the cutting lathe unintentionally transferred some of the subsequent groove wall's impulse signal into the previous groove wall. It was discernible by some listeners throughout certain recordings but a quiet passage followed by a loud sound would allow anyone to hear a faint pre-echo of the loud sound occurring 1.8 seconds ahead of time. This problem could also appear as "post"-echo, with a tinny ghost of the sound arriving 1.8 seconds after its main impulse.
  • Fidelity steadily dropped as the recording progressed; there was more vinyl per second available for fine reproduction of high frequencies at the large-diameter beginning of the music groove than on the smaller diameter inner grooves closer to the center. The beginning of the music groove on an LP gave 510 mm of vinyl per second traveling past the stylus while the ending of the music groove gave 200–210 mm of vinyl per second—less than half the linear resolution.
  • Factory problems involving incomplete hot vinyl flow within the stamper could fail to accurately recreate a small section of one side of the groove, a problem called non-fill. It usually appeared on the first song of a side if it was present at all. Non-fill made itself known as a tearing, grating or ripping sound.
  • Poor vinyl quality control could put bits of foreign material in the path of the stylus, creating a permanent 'pop' or 'tick'.
  • The user setting the stylus down in the middle of a recording could cut into the groove and create a permanent 'pop' or 'tick'.
  • Dust or foreign matter collected on the record, making for multiple 'pops' and 'ticks' if not carefully cleaned.
  • A static electric charge could build up on the surface of the spinning record and discharge into the stylus, making a loud 'pop'. In very dry climates, this could happen several times per minute. Subsequent plays of the same record would not have pops in the same places in the music as the static buildup wasn't tied to variations in the groove.
  • An off-center stamping applied a slow 0.56 Hz modulation to the playback, affecting pitch due to a greater amount of vinyl per second on one side of the record than the other. It also affected tonality because the stylus is pressed alternately into one groove wall and then the other, making the frequency response change in each channel. This problem is often called "wow", though turntable and motor problems can also cause pitch-only "wow".
  • Motor problems or belt slippage could cause momentary pitch changes. If these repeated regularly, they could be called "flutter"; if they happened slowly they could be called "wow".
  • Turntable surface slickness, or the slickness of a stack of LPs could allow the top record to slip, causing momentary lowering of pitch in the playback.
  • Tracking force of the stylus was not always the same from beginning to end of the groove. Stereo balance could shift as the recording progressed.
  • Outside electrical interference could be amplified by the magnetic cartridge. Common household wallplate SCR dimmers sharing AC lines could put noise into the playback, as could poorly shielded electronics and strong radio transmitters.
  • Loud sounds in the environment could be transmitted mechanically from the turntable's sympathetic vibration into the stylus. Heavy footfalls could bounce the needle out of the groove.
  • Heat could warp the disk, causing pitch and tone problems if minor; tracking problems if major. Badly warped records would be rendered unplayable.
  • Because of a slight slope in the lead-in groove, it was possible for the stylus to skip ahead several grooves when settling into position at the start of the recording.
  • The LP was delicate. Any accidental fumbling with the stylus or dropping of the record onto a sharp corner could scratch the record permanently, creating a series of 'ticks' and 'pops' heard at subsequent playback. Heavier accidents could cause the stylus to break through the groove wall as it was playing, creating a permanent skip that would cause the stylus to either skip ahead to the next groove or skip back to the previous groove. A skip going to the previous groove was called a broken record; the same section of 1.8 seconds of LP (1.3 if 45 rpm) music would repeat over and over until the stylus was lifted off the record.

LP versus CD

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (August 2008) (Learn how and when to remove this message)

In the early days of compact discs, vinyl records were still prized by audiophiles because of better reproduction of analog recordings; however, the drawback was greater sensitivity to scratches and dust. Early compact discs were perceived by many as thin and sharp—distorting sounds on the high end. In some cases, this was the result of record companies issuing CDs produced from master recordings that were compressed and equalized for vinyl. Early consumer compact disc players sometimes contained 14-bit digital-to-analog converters, instead of the correct 16-bit type, as a cost-cutting measure. Some players were only linear to 10 or 12 bits.

Though digital audio technology has improved over the years, some audiophiles still prefer what they perceive as the superior sound of vinyl over CDs.

Proponents of digital audio state these differences are generally inaudible to normal human hearing, and the lack of clicks, hiss and pops from analog recordings greatly improved sound fidelity. Modern anti-aliasing filters and oversampling systems used in digital recordings have reduced the problems observed with early CDs.

The "warmer" sound of analog records is generally believed on both sides of the argument to be an artifact of harmonic distortion and signal compression. This phenomenon of a preference for the sound of a beloved lower-fidelity technology is not new; a 1963 review of RCA Dynagroove recordings notes that "some listeners object to the ultra-smooth sound as ... sterile ... such distortion-forming sounds as those produced by loud brasses are eliminated at the expense of fidelity. They prefer for a climactic fortissimo to blast their machines ..."

The theory that vinyl records can audibly represent lower frequencies that compact discs cannot (making the recording sound "warmer") is disputed by some and accepted by others—according to Red Book specifications, the compact disc has a frequency response up to 22.05 kHz. The average human auditory system is sensitive to frequencies from 20 Hz to a maximum of around 22,000 Hz. This means that any frequencies that a vinyl record can represent that a compact disc cannot would be inaudible and thus completely subliminal. The lower frequency limit of human hearing can vary per person, and interference caused by sound in the lower inaudible spectrum can still influence audible sound. It's possible that phonograph intermodulation effects from low frequency sources such as rumble and wow could adversely affect audible frequency ranges.

Production

Main article: Production of gramophone records

Preservation

45 rpm records, like this one from 1955, often held a single—one especially popular tune from a particular artist—with a flip side or b-side, a bonus for owners.

Due to the nature of the medium, playback of "hard" records, eg: LPs, causes gradual degradation of the recording. The recordings are best preserved by transferring them onto more stable media and playing the records as rarely as possible. They need to be stored on edge, and do best under environmental conditions that most humans would find comfortable. The medium needs to be kept clean — but use alcohol only on PVC or optical media, not on 78s. The equipment for playback of certain formats (e.g. 16 and 78 rpm) is manufactured only in small quantities, leading to increased difficulty in finding equipment to play the recordings. (This "gradual degradation" is more noticeable on some discs than others. In fact it is possible to have eighty year old records that sound as new as brand new discs with pops and tics. How the records are handled and the equipment on which they are played as well as the manufacturing process and quality of original vinyl have a considerable impact upon their wear.) Where old disc recordings are considered to be of artistic or historic interest, record companies or archivists play back the disc on suitable equipment and record the result, typically onto a digital format which can be copied and converted without any further damage to the recording. For example, Nimbus Records uses a specially built horn record player to transfer 78s. However, anyone can do this using a standard record player with a suitable pickup, a phono-preamp (pre-amplifier) and a typical personal computer. Once a recording has been digitized, it can be manipulated with software to restore and, hopefully, improve the sound, for example by removing the result of scratches. It can also be easily converted to other digital formats such as DVD-A, CD and MP3.

As an alternative to playback with a stylus, a recording can be read optically, processed with software that calculates the velocity that the stylus would be moving in the mapped grooves and converted to a digital recording format. This does no further damage to the disc and generally produces a better sound than normal playback. This technique also has the potential to allow for reconstruction of damaged or broken disks.

With regard to inner sleeves, plastic polyethylene is purported to be better than the common paper sleeve and less bulky than the poly-lined paper variety. Paper sleeves deteriorate over time, leave dusty fibers, and produce static that attract dust. 100% poly sleeves produce less static (thereby attracting less dust), are archival, and are thinner by nature so they minimize pressure on the LP jacket seams.

Current status

File:Heavenly Oceans Vinyl and CD in 2006.jpg
Heavenly Oceans' 2006 album The Original Motion Picture Soundtrack released on vinyl and CD.

Groove recordings, first designed in the final quarter of the 19th century, held a predominant position for nearly a century—withstanding competition from reel-to-reel tape, the 8-track cartridge and the compact cassette. However, by 1988, the compact disc had surpassed the gramophone record in popularity. Then, vinyl records experienced a sudden decline in popularity between 1988 and 1991, when the major label distributors restricted their return policies, which retailers had been relying on to maintain and swap out stocks of relatively unpopular titles. First the distributors began charging retailers more for new product if they returned unsold vinyl, and then they stopped providing any credit at all for returns. Retailers, fearing they would be stuck with anything they ordered, only ordered proven, popular titles that they knew would sell, and devoted more shelf space to CDs and cassettes. Record companies also deleted many vinyl titles from production & distribution, further undermining the availability of the format and leading to the closure of pressing plants. This rapid decline in the availability of records accelerated the format's decline in popularity, and is seen by some as a deliberate ploy to make consumers switch to CDs, which were more profitable for the record companies..

In spite of their flaws, such as the lack of portability, records still have enthusiastic supporters. Vinyl records continue to be manufactured and sold today, especially by independent rock bands and labels, although record sales are considered to be a niche market composed of audiophiles, collectors and DJs. Old records and out of print recordings in particular are in much demand by collectors the world over. (See Record collecting.) Many popular new albums are given releases on vinyl records and older albums are also given reissues as well, sometimes on audiophile grade vinyl with high quality sleeves.

In the United Kingdom, sales of new vinyl records (particularly 7 inch singles) have increased significantly in recent years, somewhat reversing the downward trend seen during the 1990s.

In the United States, annual vinyl sales increased by 85.8% between 2006 and 2007, and by 89% between 2007 and 2008.

Many Electronic dance music and hip hop releases today are still exclusively on vinyl. This is because for disc jockeys ("DJs"), vinyl has an advantage over the CD: direct manipulation of the medium. DJ techniques such as slip-cueing, beatmatching and scratching originated on turntables. With CDs or compact audio cassettes one normally has only indirect manipulation options, e.g., the play, stop and pause buttons. With a record one can place the stylus a few grooves farther in or out, accelerate or decelerate the turntable, or even reverse its direction, provided the stylus, record player, and record itself are built to withstand it. However, many CDJ and DJ advances, such as DJ software and time-encoded vinyl, now have these capabilities and more.

Figures released in the United States in early 2009 showed that sales of vinyl albums nearly doubled in 2008, with 1.88 million sold - up from just under 1 million in 2007.

Notes and references

Specific notes and references:

  1. Little Wonder Records and Bubble Books.
  2. Vinyl-Record.co.uk. History of Vinyl Music Records
  3. Ober, Norman (1973-12). "You Can Thank Emil Berliner for the Shape Your Record Collection Is In". Music Educators Journal, Vol. 60, No. 4 (Dec., 1973), pp. 38-40.
  4. Oliver Read (1952). The Recording and Reproduction of Sound, Revised and Enlarged Second Edition. Indianapolis: Howard W. Sams & Co., Inc., chapter 2, "History of Acoustical Recording." Introduction of speed governors, p. 12; 1898 hand-cranked Victrola with governor, fig. 2-6, p. 14; "literature does not disclose why the standard speed of 78 rpm was chosen," p. 15
  5. Rick Kennedy, "Jelly Roll, Bix, and Hoagy: Gennett Studios and the Birth of Recorded Jazz", Indiana University Press, Bloomington and Indianapolis, 1994, pp. 63–64.
  6. A photograph of the Gennett Records studio is available here, from www.nicklucas.com.
  7. Wanamaker (1926-01-16). Wanamaker's ad in The New York Times, January 16, 1926, p. 16.
  8. Pakenham, Compton (1930), "Recorded Music: A Wide Range". The New York Times, February 23, 1930, p. 118
  9. New York Times (1925-10-07). "New Music Machine Thrills All Hearers At First Test Here". The New York Times, October 7, 1925, p. 1.
  10. Millard, Andre, America on Record: A History of Recorded Sound. Cambridge University Press, 1995, ISBN 0521475562. Retrieved April 25, 2008 from Google Books
  11. Welch, Walter L. and Burt, Leah, From tinfoil to stereo. University Press of Florida, 1994. ISBN 0813013178. Retrieved April 24, 2008
  12. "Louis Armstrong and King Oliver", Heritage Jazz, cassette, 1993
  13. Eddie Condon, "We Called It Music", Da Capo Press, New York, 1992, p. 263-264. (Originally published 1947)
  14. "(back label)", "Jammin' at Commodore with Eddie Condon and His Windy City Seven…", Commodore Jazz Classics (CD), CCD 7007, 1988
  15. http://www.naxos.com/catalogue/item.asp?item_code=8.120841
  16. http://history.sandiego.edu/gen/recording/notes.html#cylinder
  17. A catalogue issued in 1911 by Barnes & Mullins, musical-instrument dealers of London, illustrates examples in both 10" and 12" sizes; one is shown containing two records issued by The Gramophone & Typewriter Ltd no later than 1908, suggesting that the image is several years old.
  18. Penndorf, Ron. "Early Development of the LP". Retrieved 4 October 2006. {{cite web}}: Unknown parameter |dateformat= ignored (help)
  19. Peter A Soderbergh, "Olde Records Price Guide 1900–1947", Wallace–Homestead Book Company, Des Moines, Iowa, 1980, pp.193–194
  20. Williams, Trevor, A Short History of Twentieth-Century Technology, C. 1900 - C. 1950. Oxford University Press, 1982, ISBN 0198581599. Retrieved April 24, 2008 via Google Books
  21. ^ The 45 Adaptor from arcmusic.wordpress.com
  22. (Book), "Frank Sinatra: The Columbia Years:1943–1952: The Complete Recordings", unnumbered at back
  23. Soderbergh, p.194
  24. (Book), "Frank Sinatra: The Columbia Years:1943–1952: The Complete Recordings", unnumbered at back
  25. (Book), "Frank Sinatra: The Columbia Years:1943–1952: The Complete Recordings", unnumbered at back
  26. http://members.aol.com/clctrmania/cm-adapt.html
  27. "Stereo disc recording". Retrieved 4 October 2006. {{cite web}}: Unknown parameter |dateformat= ignored (help)
  28. "Standards for Stereophonic Disc Records". Record Industry Association of America Inc. 1963-10-16. Retrieved 4 October 2006. {{cite web}}: Unknown parameter |dateformat= ignored (help)
  29. "Record Collectors Guild on Dynaflex". The Record Collectors Guild.
  30. Fritz, Jose. "180 grams ", Arcane Radio Trivia, January 23, 2009. Accessed January 26, 2009. "The basic measurement behind those grams is thickness. It's been said to be less noisy which really has more to do with the grade of vinyl."
  31. How LP record is made from madehow.com
  32. BBC Music - 1940's Vinyl (accessed 22/06/2008)
  33. Official UK Charts Co. - Album info (accessed 22/06/2008)
  34. Audacity Team Forum: Pre-echo when recording vinyl record
  35. Comparative tables for 30 cm LP Standards
  36. Nichols, Roger. I Need a Digital Shrink
  37. Prima Voce. Nimbus Records, Accessed 2 November 2006.
  38. Fadeyev, V., and C. Haber (2003). "Reconstruction of mechanically recorded sound by image processing". Journal of the Audio Engineering Society. 51 (December): 1172. {{cite journal}}: External link in |title= (help)CS1 maint: multiple names: authors list (link)
  39. "How to Protect your Vinyl Records - Sleeve Selection". Retrieved 6 april 2008. {{cite web}}: Check date values in: |accessdate= (help); Unknown parameter |dateformat= ignored (help)
  40. Sources vary on the actual dates.
  41. Browne, David (October 4, 1991). "A Vinyl Farewell". Entertainment Weekly (86). {{cite journal}}: Check date values in: |date= (help)
  42. Souvignier, Todd (2004). The World of DJs and the Turntable Culture. Hal Leonard Corporation. pp. 41–42. ISBN 9780634058332.
  43. Negativland. "Shiny, Aluminum, Plastic, and Digital". Retrieved 2008-11-06.
  44. Plasketes, George (1992). "Romancing the Record: The Vinyl De-Evolution and Subcultural Evolution". Journal of Popular Culture. 26 (1): 110,112. doi:10.1111/j.0022-3840.1992.00109.x.
  45. Tony Glover (2006-05-14). "Back in the groove". The Business Online.com. Retrieved 14 January 2007. {{cite web}}: Unknown parameter |dateformat= ignored (help)
  46. Chris Hastings (2006-09-17). "Why singles are top of the pops again". Telegraph.co.uk. Retrieved 4 October 2006. {{cite web}}: Unknown parameter |dateformat= ignored (help)
  47. Browne, David ((2009-01-08)). "Vinyl Returns in the Age of MP3". Rolling Stone. Retrieved 2008-06-12. {{cite web}}: Check date values in: |date= (help)
  48. Kreps, Daniel ((2009-01-08)). "Radiohead, Neutral Milk Hotel Help Vinyl Sales Almost Double In 2008". Rolling Stone. Retrieved 2009-03-05. {{cite web}}: Check date values in: |date= (help)
  49. Zuel, Bernard (January 24, 2009). "Just for the record". Retrieved 2009-02-07.

General references:

  • Fadeyev, V., and C. Haber (2003). "Reconstruction of mechanically recorded sound by image processing". Journal of the Audio Engineering Society. 51 (December): 1172. {{cite journal}}: External link in |title= (help)CS1 maint: multiple names: authors list (link)
  • Lawrence, Harold; "Mercury Living Presence." Compact disc liner notes. Bartók, Antal Dorati, Mercury 432 017-2. 1991.
  • International standard IEC 60098: Analogue audio disk records and reproducing equipment. Third edition, International Electrotechnical Commission, 1987.
  • College Physics, Sears, Zemansky, Young, 1974, LOC #73-21135, chapter: Acoustic Phenomena
  • Powell, James R., Jr. The Audiophile's Technical Guide to 78 rpm, Transcription, and Microgroove Recordings. 1992; Gramophone Adventures, Portage, MI. ISBN 0-9634921-2-8
  • Powell, James R., Jr. Broadcast Transcription Discs. 2001; Gramophone Adventures, Portage, MI. ISBN 0-9634921-4-4
  • Powell, James R., Jr. and Randall G. Stehle. Playback Equalizer Settings for 78 rpm Recordings. Third Edition. 1993, 2001, 2007; Gramophone Adventures, Portage, MI. ISBN 0-9634921-3-6

Further reading

  • From Tin Foil to Stereo — Evolution of the Phonograph by Oliver Read and Walter L. Welch
  • The Fabulous Phonograph by Roland Gelatt, published by Cassell & Company, 1954 rev. 1977 ISBN 0-304-29904-9
  • Where have all the good times gone? — the rise and fall of the record industry Louis Barfe.
  • Pressing the LP record by Ellingham, Niel, published at 1 Bruach Lane, PH16 5DG, Scotland.
  • Sound Recordings by Peter Copeland published 1991 by the British Library ISBN 0-7123-0225-5.

External links


Physical audio recording formats
Mechanical
Analog
Grooved surface
Grooved cylinder
Grooved disc
Grooved tape
Sound-on-film
Loose magnetic wire
Magnetic wire cartridge
Magnetic surface
Loose (reel-to-reel) magnetic tape
Magnetic tape cartridge
Analog-to-digital converter
Digital
Magnetic tape cartridge
Sound-on-film
Optical disc
Electronic circuit
Hybrid
Categories: