Revision as of 16:45, 12 September 2009 view source96.51.40.121 (talk) →Scientific methodTag: section blanking← Previous edit | Revision as of 16:46, 12 September 2009 view source 96.51.40.121 (talk) →Scientific communityTag: section blankingNext edit → | ||
Line 7: | Line 7: | ||
Science is a continuing effort to discover and increase human ] and understanding through disciplined research. Using controlled methods, scientists collect ] evidence of natural or social ], record measurable ] relating to the ], and analyze this information to construct ] explanations of how things work. The methods of scientific research include the generation of ] about how phenomena work, and ] that tests these hypotheses under controlled conditions. Scientists are also expected to publish their information so other scientists can do similar experiments to double-check their conclusions. The results of this process enable better understanding of past events, and better ability to predict future events of the same kind as those that have been tested. | Science is a continuing effort to discover and increase human ] and understanding through disciplined research. Using controlled methods, scientists collect ] evidence of natural or social ], record measurable ] relating to the ], and analyze this information to construct ] explanations of how things work. The methods of scientific research include the generation of ] about how phenomena work, and ] that tests these hypotheses under controlled conditions. Scientists are also expected to publish their information so other scientists can do similar experiments to double-check their conclusions. The results of this process enable better understanding of past events, and better ability to predict future events of the same kind as those that have been tested. | ||
==Scientific community== | |||
{{main|Scientific community}} | |||
The scientific community consists of the total body of scientists, its relationships and interactions. It is normally divided into "sub-communities" each working on a particular field within science. | |||
===Fields=== | |||
{{main|Fields of science}} | |||
] causes a ] to levitate above a ]]] | |||
<!-- The organizational tables have been moved to the main article "Fields of science" --> | |||
Fields of science are widely-recognized categories of specialized expertise, and typically embody their own ] and ]. Each field will commonly be represented by one or more ], where ] research will be published. | |||
===Institutions=== | |||
] visiting the {{lang|fr|]}} in 1671]] | |||
] for the communication and promotion of scientific thought and experimentation have existed since the ] period.<ref>{{cite web | last=Parrott | first=Jim | date=August 9, 2007 | url=http://www.scholarly-societies.org/1599andearlier.html | title=Chronicle for Societies Founded from 1323 to 1599 | publisher=Scholarly Societies Project | accessdate=2007-09-11}}</ref> The oldest surviving institution is the {{lang|it|'']''}} in ].<ref>{{cite web | year=2006 | url=http://positivamente.lincei.it/ | title=Benvenuto nel sito dell'Accademia Nazionale dei Lincei | language=Italian | publisher=Accademia Nazionale dei Lincei | accessdate=2007-09-11}}</ref> National ] are distinguished institutions that exist in a number of countries, beginning with the British '']'' in 1660<ref>{{cite web | url=http://www.royalsoc.ac.uk/page.asp?id=2176 | title=Brief history of the Society | publisher=The Royal Society | accessdate=2007-09-11}}</ref> and the French {{lang|fr|'']''}} in 1666.<ref>{{cite web | first=G.G. | last=Meynell | url=http://www.royalsoc.ac.uk/page.asp?id=2176 | title=The French Academy of Sciences, 1666-91: A reassessment of the French Académie royale des sciences under Colbert (1666-83) and Louvois (1683-91) | publisher=Topics in Scientific & Medical History | accessdate=2007-09-11}}</ref> | |||
International scientific organizations, such as the '']'', have since been formed to promote cooperation between the scientific communities of different nations. More recently, influential government agencies have been created to support scientific research, including the '']'' in the ] | |||
Other prominent organizations include the ] in Argentina, the ] of many nations, ] in Australia, {{lang|fr|]}} in France, ] and {{lang|de|]}} in Germany, and in Spain, ]. | |||
===Literature=== | |||
{{main|Scientific literature}} | |||
An enormous range of ] is published.<ref>{{cite journal | |||
| last=Ziman | first=Bhadriraju | |||
| journal=Science | |||
| title=The proliferation of scientific literature: a natural process | |||
| year=1980 | volume=208 | issue=4442 | |||
| pages=369–371 | |||
| doi= 10.1126/science.7367863 | |||
| pmid=7367863 }}</ref> ]s communicate and document the results of research carried out in universities and various other research institutions, serving as an archival record of science. The first scientific journals, '']'' followed by the '']'', began publication in 1665. Since that time the total number of active periodicals has steadily increased. As of 1981, one estimate for the number of scientific and technical journals in publication was 11,500.<ref>{{cite book | |||
| first=Krishna | last=Subramanyam | |||
| coauthors=Subramanyam, Bhadriraju | year=1981 | |||
| title=Scientific and Technical Information Resources | |||
| publisher=CRC Press | isbn=0824782976 | |||
| oclc=232950234 }}</ref> Today ] lists almost 40,000, related to the medical sciences only.<ref>ftp://ftp.ncbi.nih.gov/pubmed/J_Entrez.txt</ref> | |||
Most scientific journals cover a single scientific field and publish the research within that field; the research is normally expressed in the form of a ]. Science has become so pervasive in modern societies that it is generally considered necessary to communicate the achievements, news, and ambitions of scientists to a wider populace. | |||
]s such as ], ] and ] cater to the needs of a much wider readership and provide a non-technical summary of popular areas of research, including notable discoveries and advances in certain fields of research. ]s engage the interest of many more people. Tangentially, the ] genre, primarily fantastic in nature, engages the public imagination and transmits the ideas, if not the methods, of science. | |||
Recent efforts to intensify or develop links between science and non-scientific disciplines such as ] or, more specifically, ], include the ''Creative Writing Science'' resource developed through the ].<ref>{{cite web | first=Mario | last=Petrucci | |||
| url=http://writeideas.org.uk/creativescience/index.htm | title=Creative Writing <-> Science | |||
| accessdate=2008-04-27 }}</ref> | |||
==Philosophy of science== | ==Philosophy of science== |
Revision as of 16:46, 12 September 2009
For other uses, see Science (disambiguation).Part of a series on |
Science |
---|
General |
Branches |
In society |
Science (from the Latin scientia, meaning "knowledge") refers in its broadest sense to any systematic knowledge-base or prescriptive practice that is capable of resulting in a prediction or predictable type of outcome. In this sense, science may refer to a highly skilled technique or practice.
In its more restricted contemporary sense, science refers to a system of acquiring knowledge based on scientific method, and to the organized body of knowledge gained through such research. This article focuses on the more restricted use of the word. Science as discussed in this article is sometimes called experimental science to differentiate it from applied science—the application of scientific research to specific human needs—although the two are interconnected.
Science is a continuing effort to discover and increase human knowledge and understanding through disciplined research. Using controlled methods, scientists collect observable evidence of natural or social phenomena, record measurable data relating to the observations, and analyze this information to construct theoretical explanations of how things work. The methods of scientific research include the generation of hypotheses about how phenomena work, and experimentation that tests these hypotheses under controlled conditions. Scientists are also expected to publish their information so other scientists can do similar experiments to double-check their conclusions. The results of this process enable better understanding of past events, and better ability to predict future events of the same kind as those that have been tested.
Philosophy of science
Main article: Philosophy of scienceThe philosophy of science seeks to understand the nature and justification of scientific knowledge. It has proven difficult to provide a definitive account of scientific method that can decisively serve to distinguish science from non-science. Thus there are legitimate arguments about exactly where the borders are, which is known as the problem of demarcation. There is nonetheless a set of core precepts that have broad consensus among published philosophers of science and within the scientific community at large. For example, it is universally agreed that scientific hypotheses and theories must be capable of being independently tested and verified by other scientists in order to become accepted by the scientific community.
There are different schools of thought in the philosophy of scientific method. Methodological naturalism maintains that scientific investigation must adhere to empirical study and independent verification as a process for properly developing and evaluating natural explanations for observable phenomena. Methodological naturalism, therefore, rejects supernatural explanations, arguments from authority and biased observational studies. Critical rationalism instead holds that unbiased observation is not possible and a demarcation between natural and supernatural explanations is arbitrary; it instead proposes falsifiability as the landmark of empirical theories and falsification as the universal empirical method. Critical rationalism argues for the ability of science to increase the scope of testable knowledge, but at the same time against its authority, by emphasizing its inherent fallibility. It proposes that science should be content with the rational elimination of errors in its theories, not in seeking for their verification (such as claiming certain or probable proof or disproof; both the proposal and falsification of a theory are only of methodological, conjectural, and tentative character in critical rationalism). Instrumentalism rejects the concept of truth and emphasizes merely the utility of theories as instruments for explaining and predicting phenomena.
Pseudoscience, fringe science, and junk science
Main articles: Pseudoscience, Fringe science, Junk science, Cargo cult science, and Scientific misconductAn area of study or speculation that masquerades as science in an attempt to claim a legitimacy that it would not otherwise be able to achieve is sometimes referred to as pseudoscience, fringe science, or "alternative science". Another term, junk science, is often used to describe scientific hypotheses or conclusions which, while perhaps legitimate in themselves, are believed to be used to support a position that is seen as not legitimately justified by the totality of evidence. A variety of commercial advertising, ranging from hype to fraud, may fall into this category. There also can be an element of political or ideological bias on all sides of such debates. Sometimes, research may be characterized as "bad science", research that is well-intentioned but is seen as incorrect, obsolete, incomplete, or over-simplified expositions of scientific ideas. The term "scientific misconduct" refers to situations such as where researchers have intentionally misrepresented their published data or have purposely given credit for a discovery to the wrong person.
Critiques
Philosophical critiques
Historian Jacques Barzun termed science "a faith as fanatical as any in history" and warned against the use of scientific thought to suppress considerations of meaning as integral to human existence. Many recent thinkers, such as Carolyn Merchant, Theodor Adorno and E. F. Schumacher considered that the 17th century scientific revolution shifted science from a focus on understanding nature, or wisdom, to a focus on manipulating nature, i.e. power, and that science's emphasis on manipulating nature leads it inevitably to manipulate people, as well. Science's focus on quantitative measures has led to critiques that it is unable to recognize important qualitative aspects of the world.
Psychologist Carl Jung believed that though science attempted to understand all of nature, the experimental method used would pose artificial, conditional questions that evoke only partial answers. David Parkin compared the epistemological stance of science to that of divination. He suggested that, to the degree that divination is an epistemologically specific means of gaining insight into a given question, science itself can be considered a form of divination that is framed from a Western view of the nature (and thus possible applications) of knowledge.
Several academics have offered critiques concerning ethics in science. In Science and Ethics, for example, the philosopher Bernard Rollin examines the relevance of ethics to science, and argues in favor of making education in ethics part and parcel of scientific training.
Media perspectives
The mass media face a number of pressures that can prevent them from accurately depicting competing scientific claims in terms of their credibility within the scientific community as a whole. Determining how much weight to give different sides in a scientific debate requires considerable expertise regarding the matter. Few journalists have real scientific knowledge, and even beat reporters who know a great deal about certain scientific issues may know little about other ones they are suddenly asked to cover.
Politics
Many issues damage the relationship of science to the media and the use of science and scientific arguments by politicians. As a very broad generalisation, many politicians seek certainties and facts whilst scientists typically offer probabilities and caveats. However, politicians ability to be heard in the mass media frequently distorts the scientific understanding by the public. Examples in Britain include the controversy over the MMR inoculation, and the 1988 forced resignation of a Government Minister, Edwina Currie for revealing the high probability that battery eggs were contaminated with Salmonella.
See also
Main article: Outline of scienceNotes
- "Online dictionary". Merriam-Webster. Retrieved 2000-05-22.
a department of systematized knowledge as an object of study<the science of theology> . . . something (as a sport or technique) that may be studied or learned like systematized knowledge <have it down to a science> . . . a system or method reconciling practical ends with scientific laws <cooking is both a science and an art>
{{cite web}}
: Check date values in:|accessdate=
(help) - "Online dictionary". Merriam-Webster. Retrieved 2009-05-22.
knowledge or a system of knowledge covering general truths or the operation of general laws especially as obtained and tested through scientific method . . . such knowledge or such a system of knowledge concerned with the physical world and its phenomena
- Popper, Karl (2002) . The Logic of Scientific Discovery (2nd English edition ed.). New York, NY: Routledge Classics. p. 3. ISBN 0-415-27844-9. OCLC 59377149.
{{cite book}}
:|edition=
has extra text (help) - Brugger, E. Christian (2004). "Casebeer, William D. Natural Ethical Facts: Evolution, Connectionism, and Moral Cognition". The Review of Metaphysics. 58 (2).
- Popper, Karl (2002). Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge.
- Newton-Smith, W. H. (1994). The Rationality of Science. London: Routledge. p. 30.
- Jacques Barzun, Science: The Glorious Entertainment, Harper and Row: 1964. p. 15. (quote) and Chapters II and XII.
- ^ Fritjof Capra, Uncommon Wisdom, ISBN 0-671-47322-0, p. 213
- Jung, Carl (1973). Synchronicity: An Acausal Connecting Principle. Princeton University Press. p. 35. ISBN 0691017948.
- Parkin 1991 "Simultaneity and Sequencing in the Oracular Speech of Kenyan Diviners", p. 185.
- Rollin, Bernard E. (2006). Science and Ethics. Cambridge University Press. ISBN 0521857546. OCLC 238793190.
- Dickson, David (October 11, 2004). "Science journalism must keep a critical edge". Science and Development Network. Retrieved 2008-02-20.
- Mooney, Chris (2007). "Blinded By Science, How 'Balanced' Coverage Lets the Scientific Fringe Hijack Reality". Columbia Journalism Review. Retrieved 2008-02-20.
- McIlwaine, S. (2005). "Are Journalism Students Equipped to Write About Science?". Australian Studies in Journalism. 14: 41–60. Retrieved 2008-02-20.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - "1988: Egg industry fury over salmonella claim", "On This Day," BBC News, December 3, 1988.
References
- Feyerabend, Paul (2005). Science, history of the philosophy, as cited in Honderich, Ted (2005). The Oxford companion to philosophy. Oxford Oxfordshire: Oxford University Press. ISBN 0199264791. OCLC 173262485. of. Oxford Companion to Philosophy. Oxford.
- Feynman, R.P. (1999). The Pleasure of Finding Things Out: The Best Short Works of Richard P. Feynman. Perseus Books Group. ISBN 0465023959. OCLC 181597764.
- Papineau, David. (2005). Science, problems of the philosophy of., as cited in Honderich, Ted (2005). The Oxford companion to philosophy. Oxford Oxfordshire: Oxford University Press. ISBN 0199264791. OCLC 173262485.
- Parkin, D (1991), "Simultaneity and Sequencing in the Oracular Speech of Kenyan Diviners", in Philip M. Peek (ed.), African Divination Systems: Ways of Knowing, Indianapolis, IN: Indiana University Press.
Further reading
- Augros, Robert M., Stanciu, George N., "The New Story of Science: mind and the universe", Lake Bluff, Ill.: Regnery Gateway, c1984. ISBN 0895268337
- Baxter, Charles Template:PDFlink
- Becker, Ernest (1968). The structure of evil; an essay on the unification of the science of man. New York: G. Braziller.
- Cole, K. C., Things your teacher never told you about science: Nine shocking revelations Newsday, Long Island, New York, March 23, 1986, pg 21+
- Feynman, Richard "Cargo Cult Science"
- Gopnik, Alison, "Finding Our Inner Scientist", Daedalus, Winter 2004.
- Krige, John, and Dominique Pestre, eds., Science in the Twentieth Century, Routledge 2003, ISBN 0-415-28606-9
- Kuhn, Thomas, The Structure of Scientific Revolutions, 1962.
- MacComas, William F. Template:PDFlink Rossier School of Education, University of Southern California. Direct Instruction News. Spring 2002 24–30.
- Obler, Paul C. (1962). The New Scientist: Essays on the Methods and Values of Modern Science. Anchor Books, Doubleday.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Thurs, Daniel Patrick (2007). Science Talk: Changing Notions of Science in American Popular Culture. New Brunswick, NJ: Rutgers University Press. pp. 22–52. ISBN 978-0-8135-4073-3.
- Levin, Yuval (2008). Imagining the Future: Science and American Democracy. New York, Encounter Books. ISBN 1594032092
External links
Publications
- "GCSE Science textbook". Wikibooks.org
News
- Current Events. New Scientist Magazine, Reed Business Information, Ltd.
- ScienceDaily
- Discover Magazine
- Irish Science News from Discover Science & Engineering
Resources
- World Academy of Science, Engineering and Technology
- Euroscience:
- Euroscience Open Forum (ESOF)
- Science Council
- Science Development in the Latin American docta
- A Book List of Popularized Natural and Behavioral Sciences
- Classification of the Sciences Dictionary of the History of Ideas
- "Nature of Science" University of California Museum of Paleontology
- United States Science Initiative. Selected science information provided by U.S. Government agencies, including research and development results.
Template:Link FA Template:Link FA
Category: