Misplaced Pages

Bochner identity: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 18:39, 1 September 2009 editHarej bot (talk | contribs)Bots21,332 editsm using discuss= parameter for merge template to reconcile syntax differences as part of merge template merger← Previous edit Revision as of 12:40, 10 November 2009 edit undoRausch (talk | contribs)Extended confirmed users879 editsNo edit summaryNext edit →
Line 29: Line 29:
*] *]


] ]
] ]

Revision as of 12:40, 10 November 2009

It has been suggested that this article be merged with Bochner's formula. (Discuss) Proposed since February 2009.

In mathematics — specifically, differential geometry — the Bochner identity is an identity concerning harmonic maps between Riemannian manifolds. The identity is named after the American mathematician Salomon Bochner.

Statement of the result

Let M and N be Riemannian manifolds and let u : M → N be a harmonic map. Let d denote the exterior derivative, ∇ the gradient, Δ the Laplace-Beltrami operator, RiemN the Riemann curvature tensor on N and RicM the Ricci curvature tensor on M. Then

Δ ( | u | 2 ) = | ( d u ) | 2 + R i c M u , u R i e m N ( u ) ( u , u ) u , u . {\displaystyle \Delta {\big (}|\nabla u|^{2}{\big )}={\big |}\nabla (\mathrm {d} u){\big |}^{2}+{\big \langle }\mathrm {Ric} _{M}\nabla u,\nabla u{\big \rangle }-{\big \langle }\mathrm {Riem} _{N}(u)(\nabla u,\nabla u)\nabla u,\nabla u{\big \rangle }.}

References

External links

See also

Categories: