Misplaced Pages

Anosov diffeomorphism: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 10:34, 17 August 2009 editRausch (talk | contribs)Extended confirmed users879 edits Further reading← Previous edit Revision as of 14:51, 29 December 2009 edit undoPokipsy76 (talk | contribs)Extended confirmed users2,250 edits Overview: +exampleNext edit →
Line 11: Line 11:


* If a ] on a manifold splits the tangent bundle into three invariant ]s, with one subbundle that is exponentially contracting, and one that is exponentially expanding, and a third, non-expanding, non-contracting one-dimensional sub-bundle, then the flow is called an '''Anosov flow'''. * If a ] on a manifold splits the tangent bundle into three invariant ]s, with one subbundle that is exponentially contracting, and one that is exponentially expanding, and a third, non-expanding, non-contracting one-dimensional sub-bundle, then the flow is called an '''Anosov flow'''.

A classical example of Anosov diffeomorphism is the ].


Anosov proved that Anosov diffeomorphisms are ] and form an open subset of mappings (flows) with the ''C''<sup>1</sup> topology. Anosov proved that Anosov diffeomorphisms are ] and form an open subset of mappings (flows) with the ''C''<sup>1</sup> topology.

Revision as of 14:51, 29 December 2009

In mathematics, more particularly in the fields of dynamical systems and geometric topology, an Anosov map on a manifold M is a certain type of mapping, from M to itself, with rather clearly marked local directions of 'expansion' and 'contraction'.

Anosov diffeomorphisms were introduced by D. V. Anosov, who proved that their behaviour was in an appropriate sense generic (when they exist at all).

Overview

Three closely related definitions must be distinguished:

  • If the map is a diffeomorphism, then it is called an Anosov diffeomorphism.
  • If a flow on a manifold splits the tangent bundle into three invariant subbundles, with one subbundle that is exponentially contracting, and one that is exponentially expanding, and a third, non-expanding, non-contracting one-dimensional sub-bundle, then the flow is called an Anosov flow.

A classical example of Anosov diffeomorphism is the Arnold's cat map.

Anosov proved that Anosov diffeomorphisms are structurally stable and form an open subset of mappings (flows) with the C topology.

Not every manifold admits an Anosov diffeomorphism; for example, there are no such diffeomorphisms on the sphere . The simplest examples of compact manifolds admitting them are the tori: they admit the so-called linear Anosov diffeomorphisms, which are isomorphisms having no eigenvalue of modulus 1. It was proved that any other Anosov diffeomorphism on a torus is topologically conjugate to one of this kind.

The problem of classifying manifolds that admit Anosov diffeomorphisms turned out to be very difficult, and still as of 2005 has no answer. The only known examples are infranil manifolds, and it is conjectured that they are the only ones.

Another famous problem is to determine whether or not the nonwandering set of an Anosov diffeomorphism must be the whole manifold. This is known to be true for linear Anosov diffeomorphisms (and hence for any Anosov diffeomorphism in a torus). As of December 2007, it is believed to be proved for all Anosov diffeomorphisms (Xia 2007).

Anosov flow on (tangent bundles of) Riemann surfaces

As an example, this section develops the case of the Anosov flow on the tangent bundle of a Riemann surface of negative curvature. This flow can be understood in terms of the flow on the tangent bundle of the Poincare half-plane model of hyperbolic geometry. Riemann surfaces of negative curvature may be defined as Fuchsian models, that is, as the quotients of the upper half-plane and a Fuchsian group. For the following, let H be the upper half-plane; let Γ be a Fuchsian group; let M=H\Γ be a Riemann surface of negative curvature, and let TM be the tangent bundle of unit-length vectors on the manifold M, and let TH be the tangent bundle of unit-length vectors on H. Note that a bundle of unit-length vectors on a surface is a complex line bundle.

Lie vector fields

One starts by noting that TH is isomorphic to the Lie group PSL(2,R). This group is the group of orientation-preserving isometries of the upper half-plane. The Lie algebra of PSL(2,R) is sl(2,R), and is represented by the matrices

J = ( 1 / 2 0 0 1 / 2 ) X = ( 0 1 0 0 ) Y = ( 0 0 1 0 ) {\displaystyle J=\left({\begin{matrix}1/2&0\\0&-1/2\\\end{matrix}}\right)\quad \quad X=\left({\begin{matrix}0&1\\0&0\\\end{matrix}}\right)\quad \quad Y=\left({\begin{matrix}0&0\\1&0\\\end{matrix}}\right)}

which have the algebra

[ J , X ] = X [ J , Y ] = Y [ X , Y ] = 2 J {\displaystyle =X\quad \quad =-Y\quad \quad =2J}

The exponential maps

g t = exp ( t J ) = ( e t / 2 0 0 e t / 2 ) h t = exp ( t X ) = ( 1 t 0 1 ) h t = exp ( t Y ) = ( 1 0 t 1 ) {\displaystyle g_{t}=\exp(tJ)=\left({\begin{matrix}e^{t/2}&0\\0&e^{-t/2}\\\end{matrix}}\right)\quad \quad h_{t}^{*}=\exp(tX)=\left({\begin{matrix}1&t\\0&1\\\end{matrix}}\right)\quad \quad h_{t}=\exp(tY)=\left({\begin{matrix}1&0\\t&1\\\end{matrix}}\right)}

define right-invariant flows on the manifold of TH=PSL(2,R), and likewise on TM. Defining P=TH and Q=TM, these flows define vector fields on P and Q, whose vectors lie in TP and TQ. These are just the standard, ordinary Lie vector fields on the manifold of a Lie group, and the presentation above is a standard exposition of a Lie vector field.

Anosov flow

The connection to the Anosov flow comes from the realization that g t {\displaystyle g_{t}} is the geodesic flow on P and Q. Lie vector fields being (by definition) left invariant under the action of a group element, one has that these fields are left invariant under the specific elements g t {\displaystyle g_{t}} of the geodesic flow. In other words, the spaces TP and TQ are split into three one-dimensional spaces, or subbundles, each of which are invariant under the geodesic flow. The final step is to notice that vector fields in one subbundle expand (and expand exponentially), those in another are unchanged, and those in a third shrink (and do so exponentially).

More precisely, the tangent bundle TQ may be written as the direct sum

T Q = E + E 0 E {\displaystyle TQ=E^{+}\oplus E^{0}\oplus E^{-}}

or, at a point g e = q Q {\displaystyle g\cdot e=q\in Q} , the direct sum

T q Q = E q + E q 0 E q {\displaystyle T_{q}Q=E_{q}^{+}\oplus E_{q}^{0}\oplus E_{q}^{-}}

corresponding to the Lie algebra generators Y, J and X, respectively, carried, by the left action of group element g, from the origin e to the point q. That is, one has E e + = Y {\displaystyle E_{e}^{+}=Y} , E e 0 = J {\displaystyle E_{e}^{0}=J} and E e = X {\displaystyle E_{e}^{-}=X} . These spaces are each subbundles, and are preserved (are invariant) under the action of the geodesic flow; that is, under the action of group elements g = g t {\displaystyle g=g_{t}} .

To compare the lengths of vectors in T q Q {\displaystyle T_{q}Q} at different points q, one needs a metric. Any inner product at T e P = s l ( 2 , R ) {\displaystyle T_{e}P=sl(2,\mathbb {R} )} extends to a left-invariant Riemannian metric on P, and thus to a Riemannian metric on Q. The length of a vector v E q + {\displaystyle v\in E_{q}^{+}} expands exponentially as exp(t) under the action of g t {\displaystyle g_{t}} . The length of a vector v E q {\displaystyle v\in E_{q}^{-}} shrinks exponentially as exp(-t) under the action of g t {\displaystyle g_{t}} . Vectors in E q 0 {\displaystyle E_{q}^{0}} are unchanged. This may be seen by examining how the group elements commute. The geodesic flow is invariant,

g s g t = g t g s = g s + t {\displaystyle g_{s}g_{t}=g_{t}g_{s}=g_{s+t}\,}

but the other two shrink and expand:

g s h t = h t exp ( s ) g s {\displaystyle g_{s}h_{t}^{*}=h_{t\exp(-s)}^{*}g_{s}}

and

g s h t = h t exp ( s ) g s {\displaystyle g_{s}h_{t}=h_{t\exp(s)}g_{s}\,}

where we recall that a tangent vector in E q + {\displaystyle E_{q}^{+}} is given by the derivative, with respect to t, of the curve h t {\displaystyle h_{t}} , the setting t=0.

Geometric interpretation of the Anosov flow

When acting on the point z=i of the upper half-plane, g t {\displaystyle g_{t}} corresponds to a geodesic on the upper half plane, passing through the point z=i. The action is the standard Möbius transform action of SL(2,R) on the upper half-plane, so that

g t i = ( exp ( t / 2 ) 0 0 exp ( t / 2 ) ) i = i exp ( t ) {\displaystyle g_{t}\cdot i=\left({\begin{matrix}\exp(t/2)&0\\0&\exp(-t/2)\end{matrix}}\right)\cdot i=i\exp(t)}

A general geodesic is given by

( a b c d ) i exp ( t ) = a i exp ( t ) + b c i exp ( t ) + d {\displaystyle \left({\begin{matrix}a&b\\c&d\end{matrix}}\right)\cdot i\exp(t)={\frac {ai\exp(t)+b}{ci\exp(t)+d}}}

with a, b, c and d real, with ad-bc=1. The curves h t {\displaystyle h_{t}^{*}} and h t {\displaystyle h_{t}} are called horocycles. Horocycles correspond to the motion of the normal vectors of a horosphere on the upper half-plane.

See also

Further reading

  • "Y-system,U-system, C-system", Encyclopedia of Mathematics, EMS Press, 2001
  • D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, (1967) Proc. Steklov Inst. Mathematics. 90.
  • Anthony Manning, Dynamics of geodesic and horocycle flows on surfaces of constant negative curvature, (1991), appearing as Chapter 3 in Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Tim Bedford, Michael Keane and Caroline Series, Eds. Oxford University Press, Oxford (1991). ISBN 0-19-853390-X (Provides an expository introduction to the Anosov flow on SL(2,R).)
  • Xia, Zhihong (2007), Homology of invariant foliations and its applications in dynamics abstract from International Conference on Topology and its Applications 2007 at Kyoto

Anosov diffeomorphism at PlanetMath.

Categories: