Misplaced Pages

User talk:Hayson1991/mathpage: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
< User talk:Hayson1991 Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 02:39, 28 January 2010 edit128.61.76.165 (talk)No edit summary← Previous edit Revision as of 02:40, 28 January 2010 edit undoSineBot (talk | contribs)Bots2,555,318 editsm Signing comment by 128.61.76.165 - ""Next edit →
Line 245: Line 245:
Use the Taylor polynomial of minimal degree to approximate <math>ln(1.4)</math> to accuracy .01. Use the Taylor polynomial of minimal degree to approximate <math>ln(1.4)</math> to accuracy .01.


Step 1: Make remainder smaller than .01 How? <span style="font-size: smaller;" class="autosigned">—Preceding ] comment added by ] (]) 02:39, 28 January 2010 (UTC)</span><!-- Template:UnsignedIP --> <!--Autosigned by SineBot-->
Step 1: Make remainder smaller than .01 How?

Revision as of 02:40, 28 January 2010

x = tan ( y ) {\displaystyle x=\tan \left(y\right)}

1 = sec 2 ( y ) d y d x {\displaystyle 1=\sec ^{2}\left(y\right)*{\frac {dy}{dx}}} (Chain rule, derivative of tan=sec^2)

1 sec 2 ( y ) = d y d x {\displaystyle {\frac {1}{\sec ^{2}\left(y\right)}}={\frac {dy}{dx}}}

cos 2 ( y ) = d y d x {\displaystyle \cos ^{2}\left(y\right)={\frac {dy}{dx}}}

d y d x = cos 2 ( y ) {\displaystyle {\frac {dy}{dx}}=\cos ^{2}\left(y\right)}

9~

x 2 y + x y 2 = 6 {\displaystyle x^{2}y+xy^{2}=6\,}

( 2 x y + x 2 d y d x ) + ( 1 y 2 + x 2 y d y d x ) = 0 {\displaystyle \left(2x*y+x^{2}*{\frac {dy}{dx}}\right)+\left(1*y^{2}+x*2y{\frac {dy}{dx}}\right)=0}

2 x y + x 2 d y d x + y 2 + 2 x y d y d x = 0 {\displaystyle 2xy+x^{2}{\frac {dy}{dx}}+y^{2}+2xy{\frac {dy}{dx}}=0}

x 2 d y d x + 2 x y d y d x = 2 x y y 2 {\displaystyle x^{2}{\frac {dy}{dx}}+2xy{\frac {dy}{dx}}=-2xy-y^{2}}

d y d x = 2 x y y 2 x 2 + 2 x y {\displaystyle {\frac {dy}{dx}}={\frac {-2xy-y^{2}}{x^{2}+2xy}}}

d y d x = 2 x y + y 2 x 2 + 2 x y {\displaystyle {\frac {dy}{dx}}=-{\frac {2xy+y^{2}}{x^{2}+2xy}}}

Multiple u's

To Find dy/dx for
y = 2 cos ( ( 5 x ) 2 ) {\displaystyle y=2\cos \left(\left(5x\right)^{2}\right)}

The way she explains it

you'll make 3 u's
Let  u = 2 cos ( u ) {\displaystyle {\text{Let }}u=2\cos \left(u\right)}

Let  u = u 2 {\displaystyle {\text{Let }}u=u^{2}\,}

Let  u = 5 x {\displaystyle {\text{Let }}u=5x\,}

Gaaah, help~~

Find d y d x {\displaystyle {\frac {dy}{dx}}\,} then find d 2 y d x 2 {\displaystyle {\frac {d^{2}y}{dx^{2}}}\,}

x 2 + y 2 = 1 {\displaystyle x^{2}+y^{2}=1\,}

2 x + 2 y d y d x = 0 {\displaystyle 2x+2y{\frac {dy}{dx}}=0\,}

Find first derivative

d y d x = 2 x 2 y {\displaystyle {\frac {dy}{dx}}={\frac {-2x}{2y}}\,}

d y d x = x y {\displaystyle {\frac {dy}{dx}}=-{\frac {x}{y}}\,}

Find second derivative

2 + ( 2 d y d x d y d x + 2 y d 2 y d x 2 ) = 0 {\displaystyle 2+\left(2{\frac {dy}{dx}}*{\frac {dy}{dx}}+2y*{\frac {d^{2}y}{dx^{2}}}\right)=0\,}

2 ( d y d x ) 2 + 2 y d 2 y d x 2 = 2 {\displaystyle 2\left({\frac {dy}{dx}}\right)^{2}+2y{\frac {d^{2}y}{dx^{2}}}=-2\,}

2 ( x y ) 2 + 2 y d 2 y d x 2 = 2 {\displaystyle 2\left(-{\frac {x}{y}}\right)^{2}+2y{\frac {d^{2}y}{dx^{2}}}=-2\,}

2 x 2 y 2 + 2 y d 2 y d x 2 = 2 {\displaystyle 2{\frac {x^{2}}{y^{2}}}+2y{\frac {d^{2}y}{dx^{2}}}=-2\,}

2 y d 2 y d x 2 = 2 2 x 2 y 2 {\displaystyle 2y{\frac {d^{2}y}{dx^{2}}}=-2-2{\frac {x^{2}}{y^{2}}}\,}

d 2 y d x 2 = 2 2 x 2 y 2 2 y {\displaystyle {\frac {d^{2}y}{dx^{2}}}={\frac {-2-2{\frac {x^{2}}{y^{2}}}}{2y}}\,}

d 2 y d x 2 = 1 y x 2 y 3 {\displaystyle {\frac {d^{2}y}{dx^{2}}}=-{\frac {1}{y}}-{\frac {x^{2}}{y^{3}}}\,}

d 2 y d x 2 = y 2 y 3 x 2 y 3 {\displaystyle {\frac {d^{2}y}{dx^{2}}}=-{\frac {y^{2}}{y^{3}}}-{\frac {x^{2}}{y^{3}}}\,}

d 2 y d x 2 = y 2 + x 2 y 3 {\displaystyle {\frac {d^{2}y}{dx^{2}}}=-{\frac {y^{2}+x^{2}}{y^{3}}}\,}

d 2 y d x 2 = 1 y 3 {\displaystyle {\frac {d^{2}y}{dx^{2}}}=-{\frac {1}{y^{3}}}\,}

Clock Problem ~

minute hand

x = 5 cos ( π 2 t 2 π 60 ) {\displaystyle x=5\cos \left({\frac {\pi }{2}}-{\frac {t\cdot 2\pi }{60}}\right)}

y = 5 sin ( π 2 t 2 π 60 ) {\displaystyle y=5\sin \left({\frac {\pi }{2}}-{\frac {t\cdot 2\pi }{60}}\right)}

hour hand

x = 4 cos ( π 2 t 2 π 12 ) {\displaystyle x=4\cos \left({\frac {\pi }{2}}-{\frac {t\cdot 2\pi }{12}}\right)}

y = 4 sin ( π 2 t 2 π 12 ) {\displaystyle y=4\sin \left({\frac {\pi }{2}}-{\frac {t\cdot 2\pi }{12}}\right)}

Piston speed ~

x w = r cos ( θ ) {\displaystyle x_{w}=r\cos \left(\theta \right)}

y w = r sin ( θ ) {\displaystyle y_{w}=r\sin \left(\theta \right)}

D p = L 2 x w 2 + y w {\displaystyle D_{p}={\sqrt {L^{2}-x_{w}^{2}}}+y_{w}}

d D p d t = 1 2 ( L 2 x w 2 ) 1 2 ( 2 x w d x w d t ) + d y w d t {\displaystyle {\frac {dD_{p}}{dt}}={\frac {1}{2}}\left(L^{2}-x_{w}^{2}\right)^{-{\frac {1}{2}}}\cdot \left(-2x_{w}{\frac {dx_{w}}{dt}}\right)+{\frac {dy_{w}}{dt}}}

d x w d t = r sin ( θ ) ω {\displaystyle {\frac {dx_{w}}{dt}}=-r\sin \left(\theta \right)\cdot \omega }

d y w d t = r cos ( θ ) ω {\displaystyle {\frac {dy_{w}}{dt}}=r\cos \left(\theta \right)\cdot \omega }

θ = t ω {\displaystyle \theta =t\cdot \omega }

Feon's Question 1~

Solution 1

y = tan ( arcsin ( x ) ) {\displaystyle y=\tan \left(\arcsin \left(x\right)\right)}

d y d x = sec 2 ( arcsin ( x ) ) 1 x 2 {\displaystyle {\frac {dy}{dx}}={\frac {\sec ^{2}\left(\arcsin \left(x\right)\right)}{\sqrt {1-x^{2}}}}}

Solution 2

y = tan ( arcsin ( x ) ) {\displaystyle y=\tan \left(\arcsin \left(x\right)\right)}

y = sin ( arcsin ( x ) ) cos ( arcsin ( x ) ) {\displaystyle y={\frac {\sin \left(\arcsin \left(x\right)\right)}{\cos \left(\arcsin \left(x\right)\right)}}}

y = x cos ( arcsin ( x ) ) {\displaystyle y={\frac {x}{\cos \left(\arcsin \left(x\right)\right)}}}

y = x sec ( arcsin ( x ) ) {\displaystyle y=x\sec \left(\arcsin \left(x\right)\right)}

d y d x = sec ( arcsin ( x ) ) + x sec ( arcsin ( x ) ) tan ( arcsin ( x ) ) 1 x 2 {\displaystyle {\frac {dy}{dx}}=\sec \left(\arcsin \left(x\right)\right)+x\cdot {\frac {\sec \left(\arcsin \left(x\right)\right)\tan \left(\arcsin \left(x\right)\right)}{\sqrt {1-x^{2}}}}}

d y d x = sec ( arcsin ( x ) ) + x sin ( arcsin ( x ) ) cos 2 ( arcsin ( x ) ) 1 x 2 {\displaystyle {\frac {dy}{dx}}=\sec \left(\arcsin \left(x\right)\right)+x\cdot {\frac {\sin \left(\arcsin \left(x\right)\right)}{\cos ^{2}\left(\arcsin \left(x\right)\right){\sqrt {1-x^{2}}}}}}

d y d x = sec ( arcsin ( x ) ) + x 2 cos 2 ( arcsin ( x ) ) 1 x 2 {\displaystyle {\frac {dy}{dx}}=\sec \left(\arcsin \left(x\right)\right)+{\frac {x^{2}}{\cos ^{2}\left(\arcsin \left(x\right)\right){\sqrt {1-x^{2}}}}}}

d y d x = sec ( arcsin ( x ) ) + x 2 sec 2 ( arcsin ( x ) ) 1 x 2 {\displaystyle {\frac {dy}{dx}}=\sec \left(\arcsin \left(x\right)\right)+{\frac {x^{2}\sec ^{2}\left(\arcsin \left(x\right)\right)}{\sqrt {1-x^{2}}}}}

Feon's Question 2

y = x arcsec ( x ) {\displaystyle y=x\cdot \operatorname {arcsec} \left(x\right)}

d y d x = arcsec ( x ) + x | x | x 2 1 {\displaystyle {\frac {dy}{dx}}=\operatorname {arcsec} \left(x\right)+{\frac {x}{\left|x\right|{\sqrt {x^{2}-1}}}}}

d y d x = { arcsec ( x ) + 1 x 2 1 if  x > 0 arcsec ( x ) 1 x 2 1 if  x < 0 {\displaystyle {\frac {dy}{dx}}={\begin{cases}\operatorname {arcsec} \left(x\right)+{\frac {1}{\sqrt {x^{2}-1}}}&{\mbox{if }}x>0\\\operatorname {arcsec} \left(x\right)-{\frac {1}{\sqrt {x^{2}-1}}}&{\mbox{if }}x<0\end{cases}}}

Feon's Question 3~~

y = x ( arcsin ( x ) ) 2 2 x + 2 1 x 2 arcsin ( x ) {\displaystyle y=x\left(\arcsin \left(x\right)\right)^{2}-2x+2{\sqrt {1-x^{2}}}\arcsin \left(x\right)}

y = x ( arcsin ( x ) ) 2 2 x + 2 ( 1 x 2 ) 1 2 arcsin ( x ) {\displaystyle y=x\left(\arcsin \left(x\right)\right)^{2}-2x+2\left(1-x^{2}\right)^{\frac {1}{2}}\arcsin \left(x\right)}

d y d x = ( arcsin ( x ) ) 2 + x 2 ( arcsin ( x ) ) 1 x 2 2 + 2 1 2 ( 1 x 2 ) 1 2 2 x arcsin ( x ) + 2 1 x 2 1 x 2 {\displaystyle {\frac {dy}{dx}}=\left(\arcsin \left(x\right)\right)^{2}+x\cdot {\frac {2\left(\arcsin \left(x\right)\right)}{\sqrt {1-x^{2}}}}-2+2\cdot {\frac {1}{2}}\left(1-x^{2}\right)^{-{\frac {1}{2}}}\cdot -2x\cdot \arcsin \left(x\right)+{\frac {2{\sqrt {1-x^{2}}}}{\sqrt {1-x^{2}}}}}

d y d x = ( arcsin ( x ) ) 2 + x 2 ( arcsin ( x ) ) 1 x 2 2 + 2 1 2 1 x 2 2 x arcsin ( x ) + 2 1 x 2 1 x 2 {\displaystyle {\frac {dy}{dx}}=\left(\arcsin \left(x\right)\right)^{2}+x\cdot {\frac {2\left(\arcsin \left(x\right)\right)}{\sqrt {1-x^{2}}}}-2+2\cdot {\frac {1}{2{\sqrt {1-x^{2}}}}}\cdot -2x\cdot \arcsin \left(x\right)+{\frac {2{\sqrt {1-x^{2}}}}{\sqrt {1-x^{2}}}}}

d y d x = arcsin 2 ( x ) + 2 x arcsin ( x ) 1 x 2 2 x arcsin ( x ) 1 x 2 2 + 2 {\displaystyle {\frac {dy}{dx}}=\arcsin ^{2}\left(x\right)+{\frac {2x\arcsin \left(x\right)}{\sqrt {1-x^{2}}}}-{\frac {2x\arcsin \left(x\right)}{\sqrt {1-x^{2}}}}-2+2}

d y d x = arcsin 2 ( x ) {\displaystyle {\frac {dy}{dx}}=\arcsin ^{2}\left(x\right)}

Last Part

u v = 2 1 x 2 arcsin ( x ) {\displaystyle u\cdot v=2{\sqrt {1-x^{2}}}\cdot \arcsin \left(x\right)}

u = 2 1 x 2 {\displaystyle u=2{\sqrt {1-x^{2}}}}

v = arcsin ( x ) {\displaystyle v=\arcsin \left(x\right)}

u = 2 1 2 1 x 2 2 x {\displaystyle u'=2\cdot {\frac {1}{2{\sqrt {1-x^{2}}}}}\cdot -2x}

u = 2 x 1 x 2 {\displaystyle u'={\frac {-2x}{\sqrt {1-x^{2}}}}}

v = 1 1 x 2 {\displaystyle v'={\frac {1}{\sqrt {1-x^{2}}}}}

u v + v u = 2 x 1 x 2 arcsin ( x ) + 1 1 x 2 2 1 x 2 {\displaystyle u'v+v'u={\frac {-2x}{\sqrt {1-x^{2}}}}\cdot \arcsin \left(x\right)+{\frac {1}{\sqrt {1-x^{2}}}}\cdot 2{\sqrt {1-x^{2}}}}

u v + v u = 2 x arcsin ( x ) 1 x 2 + 2 {\displaystyle u'v+v'u=-{\frac {2x\arcsin \left(x\right)}{\sqrt {1-x^{2}}}}+2}

ln derivative

y = ln x 1 x + 1 {\displaystyle y=\ln {\sqrt {\frac {x-1}{x+1}}}}
d y d x = 1 x 1 x + 1 1 2 x 1 x + 1 1 ( x + 1 ) 1 ( x 1 ) ( x + 1 ) 2 {\displaystyle {\frac {dy}{dx}}={\frac {1}{\sqrt {\frac {x-1}{x+1}}}}\cdot {\frac {1}{2{\sqrt {\frac {x-1}{x+1}}}}}\cdot {\frac {1\left(x+1\right)-1\left(x-1\right)}{\left(x+1\right)^{2}}}}
d y d x = x + 1 x 1 ( 1 2 x + 1 x 1 ) 2 ( x + 1 ) 2 {\displaystyle {\frac {dy}{dx}}={\sqrt {\frac {x+1}{x-1}}}\cdot \left({\frac {1}{2}}\cdot {\sqrt {\frac {x+1}{x-1}}}\right)\cdot {\frac {2}{\left(x+1\right)^{2}}}}
d y d x = x + 1 2 x 2 2 ( x + 1 ) 2 {\displaystyle {\frac {dy}{dx}}={\frac {x+1}{2x-2}}\cdot {\frac {2}{\left(x+1\right)^{2}}}}
d y d x = 1 ( x 1 ) ( x + 1 ) {\displaystyle {\frac {dy}{dx}}={\frac {1}{\left(x-1\right)\left(x+1\right)}}}
d y d x = 1 x 2 1 {\displaystyle {\frac {dy}{dx}}={\frac {1}{x^{2}-1}}}

ln derivative 2~

y = ln ( x + 4 + x 2 ) {\displaystyle y=\ln {\left(x+{\sqrt {4+x^{2}}}\right)}}
d y d x = 1 ( x + 4 + x 2 ) ( 1 + 1 2 4 + x 2 2 x ) {\displaystyle {\frac {dy}{dx}}={\frac {1}{\left(x+{\sqrt {4+x^{2}}}\right)}}\cdot \left(1+{\frac {1}{2{\sqrt {4+x^{2}}}}}\cdot 2x\right)}

Difference

For the original function f:

1

1 b a a b f d x {\displaystyle {\frac {1}{b-a}}\int _{a}^{b}{fdx}}

2

f ( b ) f ( a ) b a {\displaystyle {\frac {f(b)-f(a)}{b-a}}}

TingTing's Physics Problem ~

x {\displaystyle \,x\,} y {\displaystyle \,y\,}
x = given {\displaystyle x={\mbox{given}}\,} y = given {\displaystyle y={\mbox{given}}\,}
t = {\displaystyle t=\,} t = {\displaystyle t=\,}
v = v 0 cos ( θ ) {\displaystyle v=v_{0}\cos \left(\theta \right)\,} v = v 0 sin ( θ ) {\displaystyle v=v_{0}\sin \left(\theta \right)\,}
a = 0 {\displaystyle a=0\,} a = 9.81 {\displaystyle a=-9.81\,}

y = v 0 sin ( θ ) t + 1 2 a t 2 {\displaystyle y=v_{0}\sin \left(\theta \right)t+{\frac {1}{2}}at^{2}\,}

x = v 0 cos ( θ ) t {\displaystyle x=v_{0}\cos \left(\theta \right)t\,}
x v 0 cos ( θ ) = t {\displaystyle {\frac {x}{v_{0}\cos \left(\theta \right)}}=t\,}
t = x v 0 cos ( θ ) {\displaystyle t={\frac {x}{v_{0}\cos \left(\theta \right)}}\,}

y = v 0 sin ( θ ) t + 1 2 a ( x v 0 cos ( θ ) ) 2 {\displaystyle y=v_{0}\sin \left(\theta \right)t+{\frac {1}{2}}a\left({\frac {x}{v_{0}\cos \left(\theta \right)}}\right)^{2}\,}

How to do logs without a calculator.

Memorization

There are 2 constants you have to memorize:

1)  1 2 log ( 3.16 ) {\displaystyle {\text{1) }}{\frac {1}{2}}\approx \log \left(3.16\right)}

2)  { log ( e ) 0.434  or  1 log ( e ) 2.304 {\displaystyle {\text{2) }}{\begin{cases}\log \left(e\right)\approx 0.434\\\,\,\,\,\,{\text{ or }}\\{\frac {1}{\log \left(e\right)}}\approx 2.304\end{cases}}}

Method

Example 1

log ( 1234.34599 ) {\displaystyle \log \left(1234.34599\right)}

= log ( 1.23434599 × 10 3 ) {\displaystyle =\log \left(1.23434599\times 10^{3}\right)}

= log ( 1.23434599 ) + log ( 10 3 ) {\displaystyle =\log \left(1.23434599\right)+\log \left(10^{3}\right)}

= log ( 1.23434599 ) + 3 {\displaystyle =\log \left(1.23434599\right)+3}

Since  1.23 < 3.16 log ( 1234.34599 )  is between  3.0  and  3.5 {\displaystyle {\text{Since }}1.23<3.16{\text{, }}\log \left(1234.34599\right){\text{ is between }}3.0{\text{ and }}3.5}

And  log ( 1234.34599 ) 3 + 1.23 ÷ 3.16 × 1 2 3.195 {\displaystyle {\text{And }}\log \left(1234.34599\right)\approx 3+1.23\div 3.16\times {\frac {1}{2}}\approx 3.195}

Example 2

log ( 53.32423 ) {\displaystyle \log \left(53.32423\right)}

= log ( 5.332423 × 10 1 ) {\displaystyle =\log \left(5.332423\times 10^{1}\right)}

= log ( 5.332423 ) + log ( 10 1 ) {\displaystyle =\log \left(5.332423\right)+\log \left(10^{1}\right)}

= log ( 5.332423 ) + 1 {\displaystyle =\log \left(5.332423\right)+1}

Since  5.33 > 3.16 log ( 53.32423 )  is between  1.5  and  2.0 {\displaystyle {\text{Since }}5.33>3.16{\text{, }}\log \left(53.32423\right){\text{ is between }}1.5{\text{ and }}2.0}

And  log ( 53.32423 ) 1 + 5.33 ÷ 3.16 × 1 2 1.843 {\displaystyle {\text{And }}\log \left(53.32423\right)\approx 1+5.33\div 3.16\times {\frac {1}{2}}\approx 1.843}

Example 3

log ( 0.00003942 ) {\displaystyle \log \left(0.00003942\right)}

= log ( 3.942 × 10 5 ) {\displaystyle =\log \left(3.942\times 10^{-5}\right)}

= log ( 3.942 ) + log ( 10 5 ) {\displaystyle =\log \left(3.942\right)+\log \left(10^{-5}\right)}

= log ( 3.942 ) 5 {\displaystyle =\log \left(3.942\right)-5}

Since  3.942 > 3.16 log ( 0.00003942 )  is between  4.0  and  4.5 {\displaystyle {\text{Since }}3.942>3.16{\text{, }}\log \left(0.00003942\right){\text{ is between }}-4.0{\text{ and }}-4.5}

And  log ( 0.00003942 ) 5 + 3.942 ÷ 3.16 × 1 2 4.376 {\displaystyle {\text{And }}\log \left(0.00003942\right)\approx -5+3.942\div 3.16\times {\frac {1}{2}}\approx -4.376}

Example 4

ln ( 234.213 ) {\displaystyle \ln \left(234.213\right)}

= log e ( 234.213 ) {\displaystyle =\log _{e}\left(234.213\right)}

= log ( 234.213 ) log ( e ) {\displaystyle ={\frac {\log \left(234.213\right)}{\log \left(e\right)}}}

= 1 log ( e ) × log ( 2.34213 × 10 2 ) {\displaystyle ={\frac {1}{\log \left(e\right)}}\times \log \left(2.34213\times 10^{2}\right)}

= 1 log ( e ) × log ( 2.34213 ) + 2 log ( e ) {\displaystyle ={\frac {1}{\log \left(e\right)}}\times \log \left(2.34213\right)+{\frac {2}{\log \left(e\right)}}}

= 1 0.434 × log ( 2.34213 ) + 2 0.434 {\displaystyle ={\frac {1}{0.434}}\times \log \left(2.34213\right)+{\frac {2}{0.434}}}

= 2.304 × log ( 2.34213 ) + 2 × 2.304 {\displaystyle =2.304\times \log \left(2.34213\right)+2\times 2.304}

= 2.304 × log ( 2.34213 ) + 4.608 {\displaystyle =2.304\times \log \left(2.34213\right)+4.608}

2.304 × ( 2.34213 ÷ 3.16 × 1 2 ) + 4.608 {\displaystyle \approx 2.304\times \left(2.34213\div 3.16\times {\frac {1}{2}}\right)+4.608}

5.857 {\displaystyle \approx 5.857}

TingTing's Problem

Because of y = 8 y + 5 {\displaystyle y'''=-8y+5\,} and y = e 2 x + B x 3 + C x 2 + D x + E {\displaystyle y=e^{-2x}+Bx^{3}+Cx^{2}+Dx+E\,} :

y = 8 ( e 2 x + B x 3 + C x 2 + D x + E ) + 5 {\displaystyle y'''=-8\left(e^{-2x}+Bx^{3}+Cx^{2}+Dx+E\right)+5\,}


y = e 2 x + B x 3 + C x 2 + D x + E {\displaystyle y=e^{-2x}+Bx^{3}+Cx^{2}+Dx+E\,}

y = 2 e 2 x + 3 B x 2 + 2 C x + D {\displaystyle y'=-2e^{-2x}+3Bx^{2}+2Cx+D\,}

y = 4 e 2 x + 3 2 B x + 2 C {\displaystyle y''=4e^{-2x}+3\cdot 2Bx+2C\,}

y = 8 e 2 x + 3 2 B = 8 e 2 x + 6 B {\displaystyle y'''=-8e^{-2x}+3\cdot 2B=-8e^{-2x}+6B\,}


Since y = 8 e 2 x + 6 B {\displaystyle y'''=-8e^{-2x}+6B\,} and y = 8 ( e 2 x + B x 3 + C x 2 + D x + E ) + 5 {\displaystyle y'''=-8\left(e^{-2x}+Bx^{3}+Cx^{2}+Dx+E\right)+5\,} :

8 e 2 x + 6 B = 8 ( e 2 x + B x 3 + C x 2 + D x + E ) + 5 {\displaystyle -8e^{-2x}+6B=-8\left(e^{-2x}+Bx^{3}+Cx^{2}+Dx+E\right)+5\,}

6 B = 8 B x 3 8 C x 2 8 D x 8 E + 5 {\displaystyle 6B=-8Bx^{3}-8Cx^{2}-8Dx-8E+5\,}

0 x 3 + 0 x 2 + 0 x + 6 B = 8 B x 3 8 C x 2 8 D x 8 E + 5 {\displaystyle 0x^{3}+0x^{2}+0x+6B=-8Bx^{3}-8Cx^{2}-8Dx-8E+5\,}


Therefore:
{ 0 = 8 B 0 = 8 C 0 = 8 D 6 B = 8 E + 5 {\displaystyle {\begin{cases}0=-8B\,\\0=-8C\,\\0=-8D\,\\6B=-8E+5\,\end{cases}}}

{ B = 0 C = 0 D = 0 E = 5 8 {\displaystyle {\begin{cases}B=0\,\\C=0\,\\D=0\,\\E={\frac {5}{8}}\,\end{cases}}}


y = e 2 x + B x 3 + C x 2 + D x + E {\displaystyle y=e^{-2x}+Bx^{3}+Cx^{2}+Dx+E\,}

y = e 2 x + 5 8 {\displaystyle y=e^{-2x}+{\frac {5}{8}}\,}

Kelly's problem

k 0 ( 2 k x 5 k ) d x = k 2 {\displaystyle \int _{k}^{0}\left(2kx-5k\right)dx=k^{2}}

[ k x 2 5 k x ] x = k x = 0 = k 2 {\displaystyle \left_{x=k}^{x=0}=k^{2}}

( 0 0 ) ( k k 2 5 k k ) = k 2 {\displaystyle \left(0-0\right)-\left(k\cdot k^{2}-5k\cdot k\right)=k^{2}}

( k k 2 5 k k ) = k 2 {\displaystyle -\left(k\cdot k^{2}-5k\cdot k\right)=k^{2}}

k 3 5 k 2 = k 2 {\displaystyle k^{3}-5k^{2}=-k^{2}\,}

k 3 = 4 k 2 {\displaystyle k^{3}=4k^{2}\,}

k = 4 {\displaystyle k=4\,}


Taylor Polynomial problem

Use the Taylor polynomial of minimal degree to approximate l n ( 1.4 ) {\displaystyle ln(1.4)} to accuracy .01.

Step 1: Make remainder smaller than .01 How? —Preceding unsigned comment added by 128.61.76.165 (talk) 02:39, 28 January 2010 (UTC)