Misplaced Pages

Smooth infinitesimal analysis: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 14:53, 13 November 2009 editCBM2 (talk | contribs)Rollbackers938 edits External links: refine cat← Previous edit Revision as of 08:01, 10 February 2010 edit undoTea2min (talk | contribs)Extended confirmed users, Pending changes reviewers21,783 editsm DashesNext edit →
Line 7: Line 7:
In typical ] of smooth infinitesimal analysis, the infinitesimals are not invertible, and therefore the theory does not contain infinite numbers. However, there are also models that include invertible infinitesimals. In typical ] of smooth infinitesimal analysis, the infinitesimals are not invertible, and therefore the theory does not contain infinite numbers. However, there are also models that include invertible infinitesimals.


Other mathematical systems exist which include infinitesimals, including ] and the ]s. Smooth infinitesimal analysis is like non-standard analysis in that (1) it is meant to serve as a foundation for analysis, and (2) the infinitesimal quantities do not have concrete sizes (as opposed to the surreals, in which a typical infinitesimal is 1/ω, where ω is the von Neumann ordinal). However, smooth infinitesimal analysis differs from non-standard analysis in its use of nonclassical logic, and in lacking the ]. Some theorems of standard and non-standard analysis are false in smooth infinitesimal analysis, including the ] and the ]. Statements in ] can be translated into statements about limits, but the same is not always true in smooth infinitesimal analysis. Other mathematical systems exist which include infinitesimals, including ] and the ]s. Smooth infinitesimal analysis is like non-standard analysis in that (1) it is meant to serve as a foundation for analysis, and (2) the infinitesimal quantities do not have concrete sizes (as opposed to the surreals, in which a typical infinitesimal is 1/ω, where ω is the von Neumann ordinal). However, smooth infinitesimal analysis differs from non-standard analysis in its use of nonclassical logic, and in lacking the ]. Some theorems of standard and non-standard analysis are false in smooth infinitesimal analysis, including the ] and the ]. Statements in ] can be translated into statements about limits, but the same is not always true in smooth infinitesimal analysis.


Intuitively, smooth infinitesimal analysis can be interpreted as describing a world in which lines are made out of infinitesimally small segments, not out of points. These segments can be thought of as being long enough to have a definite direction, but not long enough to be curved. The construction of discontinuous functions fails because a function is identified with a curve, and the curve cannot be constructed pointwise. We can imagine the intermediate value theorem's failure as resulting from the ability of an infinitesimal segment to straddle a line. Similarly, the Banach-Tarski paradox fails because a volume cannot be taken apart into points. Intuitively, smooth infinitesimal analysis can be interpreted as describing a world in which lines are made out of infinitesimally small segments, not out of points. These segments can be thought of as being long enough to have a definite direction, but not long enough to be curved. The construction of discontinuous functions fails because a function is identified with a curve, and the curve cannot be constructed pointwise. We can imagine the intermediate value theorem's failure as resulting from the ability of an infinitesimal segment to straddle a line. Similarly, the Banach–Tarski paradox fails because a volume cannot be taken apart into points.


==See also== ==See also==

Revision as of 08:01, 10 February 2010

Smooth infinitesimal analysis is a mathematically rigorous reformulation of the calculus in terms of infinitesimals. Based on the ideas of F. W. Lawvere and employing the methods of category theory, it views all functions as being continuous and incapable of being expressed in terms of discrete entities. As a theory, it is a subset of synthetic differential geometry.

The nilsquare or nilpotent infinitesimals are numbers x where x² = 0 is true, but x = 0 need not be true at the same time.

This approach departs from the classical logic used in conventional mathematics by denying the law of the excluded middle, i.e., NOT (ab) does not have to mean a = b. All functions whose domain is R, the continuum, are continuous and infinitely differentiable. For example, one could attempt to define a discontinuous function f(x) with f(x) = 1 for x = 0, and f(x) = 0 for x ≠ 0. However, the domain of this function is not provably R, since it is not provable that for any x, either x = 0 or x ≠ 0 must hold.

In typical models of smooth infinitesimal analysis, the infinitesimals are not invertible, and therefore the theory does not contain infinite numbers. However, there are also models that include invertible infinitesimals.

Other mathematical systems exist which include infinitesimals, including non-standard analysis and the surreal numbers. Smooth infinitesimal analysis is like non-standard analysis in that (1) it is meant to serve as a foundation for analysis, and (2) the infinitesimal quantities do not have concrete sizes (as opposed to the surreals, in which a typical infinitesimal is 1/ω, where ω is the von Neumann ordinal). However, smooth infinitesimal analysis differs from non-standard analysis in its use of nonclassical logic, and in lacking the transfer principle. Some theorems of standard and non-standard analysis are false in smooth infinitesimal analysis, including the intermediate value theorem and the Banach–Tarski paradox. Statements in non-standard analysis can be translated into statements about limits, but the same is not always true in smooth infinitesimal analysis.

Intuitively, smooth infinitesimal analysis can be interpreted as describing a world in which lines are made out of infinitesimally small segments, not out of points. These segments can be thought of as being long enough to have a definite direction, but not long enough to be curved. The construction of discontinuous functions fails because a function is identified with a curve, and the curve cannot be constructed pointwise. We can imagine the intermediate value theorem's failure as resulting from the ability of an infinitesimal segment to straddle a line. Similarly, the Banach–Tarski paradox fails because a volume cannot be taken apart into points.

See also

Further reading

  • Bell, John L., Invitation to Smooth Infinitesimal Analysis (PDF file)
  • Bell, John L., A Primer of Infinitesimal Analysis, Cambridge University Press, 1998.
  • Moerdijk, I. and Reyes, G.E., Models for Smooth Infinitesimal Analysis, Springer-Verlag, 1991.

External links

Categories: