Misplaced Pages

Nicolaus Copernicus: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 04:05, 6 February 2006 view sourceMatthead (talk | contribs)Autopatrolled, Extended confirmed users, Rollbackers21,271 edits rv to last version of Ksenon - 4th Person to make full rv just to get 1 word in - Besides, Britannica says "died in Frauenburg". Now, what do you prefer: Polish astronomer or renaming Frombork?← Previous edit Revision as of 04:23, 6 February 2006 view source Balcer (talk | contribs)12,675 edits rv (since so many people are going against you, can you not take a hint and rethink your position? I would, in your place)Next edit →
Line 1: Line 1:
] ]
'''Nicolaus Copernicus''' (], ] – ], ]) is famous for his development of a ]-useful ] (]-centered) ] of the ].


'''Nicolaus Copernicus''' (]: ''Mikołaj Kopernik'', ]: ''Nikolaus Kopernikus''; ], ] – ], ]) was a Polish ], ], ], ], administrator and ]. His greatest legacy is the development of a ]-useful ] (]-centered) ] of the ].
== Synopsis ==

Copernicus (]: ''Nikolaus Kopernikus'', ]: ''Mikołaj Kopernik'') was a European ], ], ], ], administrator and ] who conducted his research in cooperation with many others, based on ancient ] <!-- or should that be Italian, Egyptian, Turkish, in case they lived outside of Hellas ? --> and ] <!-- or should that be Spanish, Morrocan, Algerian, Tunisian, ...? --> sources. His greatest legacy is ], which was the result of decades of work, and published only shortly before his death. Thus, he never witnessed the conflicts his work triggered. His formulation of how the ] rather than the ] is at the center of the ] is considered one of the most important ] ever made, as it came to mark the starting point of modern ] and, in turn, modern ]. It also encouraged young astronomers, scientists and scholars to take a more ] attitude toward established ]. Copernicus worked in ] as a church ], ], administrator, ], ], ], ] and, in conducting defense against the ], as a military leader. Amid all his responsibilities, he treated astronomy as a ]. However, his formulation of how the ] rather than the ] is at the center of the ] is considered one of the most important ] ever made, as it came to mark the starting point of modern ] and, in turn, modern ]. It also encouraged young astronomers, scientists and scholars to take a more ] attitude toward established ].


During his life, he mainly worked in ] as a church ], ], administrator, ], ], ], ] and, in conducting defense against the ], as a military leader. Amid all his responsibilities, he treated astronomy as a ], which might be a reason he hesitated to publish. Apart from extended studies in Italy, his life was influenced by both Polish and German ancestry, culture, education and political structures. The ongoing ] which started in Germany connected issues of faith with political loyalties, and forced people to make decisions for one side or the other. During the centuries after his death in 1543, when his theory and fame was well established, claims from Germans and Poles were made that he was solely one of theirs. Among moderate people and institutions, Copernicus his considered a forerunner of Europe who unites both Germans and Poles within the expanded EU rather than separates them.


==Biography== ==Biography==
] City Hall.]] ] City Hall.]]
Copernicus was born in ] at ] (] city Thorn) in the ] province of ]. His father Nikolas, a citizen of ], then the capital of ], had moved to Toruń in ] once the war with the ] was concluded, and had become a respected citizen of that city. Copernicus was ten when his father, a wealthy businessman and ] trader, died. Little is known of Copernicus' mother, ], who appears to have predeceased her husband. Copernicus' maternal uncle, ], a church ] and later ] governor of ], reared him and his three siblings after the death of Copernicus' father. Copernicus had a brother and two sisters: Copernicus was born in ] at ] (] city Thorn) in the ] province of ]. His father Nikolas, a citizen of ], then the capital of ], had moved to Toruń in ] once the war with the ] was concluded, and had become a respected citizen of that city. Copernicus was ten when his father, a wealthy businessman and ] trader, died. Little is known of Copernicus' mother, ], who appears to have predeceased her husband. Copernicus' maternal uncle, ], a church ] and later ] governor of ], reared him and his three siblings after the death of Copernicus' father. Copernicus had a brother and two sisters:
* Andreas became a canon at ] (Frauenburg) * the brother, Andreas, became a canon at ] (Frauenburg);
* Barbara became a ] nun * Barbara became a ] nun; and
* Katharina married a businessman and city councillor, Barthel Gertner * Katharina married a businessman and city councillor, Barthel Gertner.


In ] Copernicus enrolled at the ] in Cracow, and encountered ] here for the first time, thanks to his teacher ]. This ] soon fascinated him, as shown by his books (later carried off as war booty by the Swedes during ], and now at the ]). After four years at Cracow, followed by a brief stay at Toruń, he went to ], where he studied ] and ] at the universities of ] and ]. His bishop-uncle financed his education and wished for him to become a ] as well. However, while studying ] and ] at ], Copernicus met the famous ], ]. Copernicus attended his lectures and became his disciple and assistant. The first observations that Copernicus made in ], together with Novara, are recorded in Copernicus' epochal book, '']''. In ] Copernicus enrolled at the ] in Cracow, and here for the first time encountered ], thanks to his teacher ]. This ] soon fascinated him, as shown by his books (later carried off as war booty by the Swedes during ], and now at the ]). After four years at Cracow, followed by a brief stay at Toruń, he went to ], where he studied ] and ] at the universities of ] and ]. His bishop-uncle financed his education and wished for him to become a ] as well. However, while studying ] and ] at ], Copernicus met the famous ], ]. Copernicus attended his lectures and became his disciple and assistant. The first observations that Copernicus made in ], together with Novara, are recorded in Copernicus' epochal book, '']''.


] in front of the ] in ] ]] ] in front of the ] in ] ]]
In ] Copernicus' uncle was ordained Bishop of Warmia, and Copernicus was named a canon at Frombork (Frauenburg) ], but he waited in Italy for the great ] of ]. Copernicus went to ], where he observed a lunar ] and gave some lectures in astronomy or mathematics. In ] Copernicus' uncle was ordained Bishop of Warmia, and Copernicus was named a canon at Frombork (Frauenburg) ], but he waited in Italy for the great ] of ]. Copernicus went to ], where he observed a lunar ] and gave some lectures in astronomy or mathematics.


He would thus have visited Frombork only in ]. As soon as he arrived, he requested and obtained permission to return to Italy to complete his studies at Padua (with Guarico and Fracastoro) and at Ferrara (with ]), where in ] he received his doctorate in canon law. It has been supposed that it was in Padua that he encountered passages from ] and ] about opinions of the ancients on the movement of the Earth, and formed the first intuition of his own future theory. His collection of observations and ideas pertinent to his theory began in ]. He would thus have visited Frombork only in ]. As soon as he arrived, he requested and obtained permission to return to Italy to complete his studies at Padua (with Guarico and Fracastoro) and at Ferrara (with ]), where in ] he received his doctorate in canon law. It has been supposed that it was in Padua that he encountered passages from ] and ] about opinions of the ancients on the movement of the Earth, and formed the first intuition of his own future theory. His collection of observations and ideas pertinent to his theory began in ].


Having left Italy at the end of his studies, he came to live and work at Frombork. Some time before his return to Warmia, he had received a position at the Collegiate Church of the Holy Cross in ] (Breslau), ], which he would resign a few years before his death. Through the rest of his life he made astronomical observations and calculations, but always in his spare time and never as a profession. Having left Italy at the end of his studies, he came to live and work at Frombork. Some time before his return to Warmia, he had received a position at the Collegiate Church of the Holy Cross in ] (Breslau), ], which he would resign a few years before his death. Through the rest of his life he made astronomical observations and calculations, but always in his spare time and never as a profession.


Copernicus worked for years with the ] ] on monetary reform and published some studies about the value of ]; as governor of Warmia, he administered taxes and dealt out justice. It was at this time (beginning in ], the year of ]'s birth) that Copernicus came up with one of the earliest iterations of the theory now known as ]. During these years he also travelled extensively on government business and as a ], on behalf of the ] of Warmia. Copernicus worked for years with the Prussian diet on monetary reform and published some studies about the value of ]; as governor of Warmia, he administered taxes and dealt out justice. It was at this time (beginning in ], the year of ]'s birth) that Copernicus came up with one of the earliest iterations of the theory now known as ]. During these years he also traveled extensively on government business and as a ], on behalf of the ] of Warmia.


In ] he made his ''Commentariolus'' — a short handwritten text describing his ideas about the heliocentric hypothesis — available to friends. Thereafter he continued gathering evidence for a more detailed work. During the war between the ] and the Kingdom of Poland (]–]) Copernicus successfully defended Allenstein (]) as the head of royal troops besieged by the forces of the King's <!-- tricky insinuation, isn't it? --> nephew, ]. In ] he made his ''Commentariolus'' — a short handwritten text describing his ideas about the heliocentric hypothesis — available to friends. Thereafter he continued gathering evidence for a more detailed work. During the war between the ] and the Kingdom of Poland (]–]) Copernicus successfully defended Allenstein (]) at the head of royal troops besieged by the forces of ].


].]] ].]]
In ] <!-- ] spelling? --> ] delivered a series of lectures in Rome outlining Copernicus' theory. By ] Copernicus' work was already in definitive form, and some rumors about his theory had reached scientists all over ]. From many parts of the continent, Copernicus received invitations to publish, but he feared persecution for his revolutionary work by the establishment. ] <!-- ] spelling? --> ] of ] wrote, asking him to communicate his ideas more widely and requesting a copy for himself; "''Therefore, learned man, without wishing to be inopportune, I beg you most emphatically to communicate your discovery to the learned world, and to send me as soon as possible your theories about the Universe, together with the tables and whatever else you have pertaining to the subject.''" Some have suggested that this note may have made Copernicus leery of publication, while others have suggested that the Church wanted to ensure that his ideas were published. In ] <!-- ] spelling? --> ] delivered a series of lectures in Rome outlining Copernicus' theory. By ] Copernicus' work was already in definitive form, and some rumors about his theory had reached scientists all over ]. From many parts of the continent, Copernicus received invitations to publish, but he feared persecution for his revolutionary work by the establishment. ] <!-- ] spelling? --> ] of ] wrote, asking him to communicate his ideas more widely and requesting a copy for himself; "Therefore, learned man, without wishing to be inopportune, I beg you most emphatically to communicate your discovery to the learned world, and to send me as soon as possible your theories about the Universe, together with the tables and whatever else you have pertaining to the subject." Some have suggested that this note may have made Copernicus leery of publication, while others have suggested that the Church wanted to ensure that his ideas were published.


Copernicus was still completing his work (even if he was not convinced that he wanted to publish it) when in ] ], a great ] from ], arrived in Frombork. ] had arranged for Rheticus to visit several astronomers and study with them. Rheticus became a disciple of Copernicus' and stayed with him for two years, during which he wrote a book, ''Narratio prima'', outlining the essence of the theory. Copernicus was still completing his work (even if he was not convinced that he wanted to publish it) when in ] ], a great ] from ], arrived in Frombork. ] had arranged for Rheticus to visit several astronomers and study with them. Rheticus became a disciple of Copernicus' and stayed with him for two years, during which he wrote a book, ''Narratio prima'', outlining the essence of the theory.


In ], in Copernicus' name, Rheticus published a treatise on ] (later included in the second book of '']''). Under strong pressure from Rheticus, and having seen that the first general reception of his work had not been unfavorable, Copernicus finally agreed to give the book to his close friend ], ] of ] (Kulm), to be delivered to Rheticus for printing in ] (Nuremberg). In ], in Copernicus' name, Rheticus published a treatise on ] (later included in the second book of '']''). Under strong pressure from Rheticus, and having seen that the first general reception of his work had not been unfavorable, Copernicus finally agreed to give the book to his close friend ], ] of ] (Kulm), to be delivered to Rheticus for printing at ] (Nürnberg).


Legend says that the first printed copy of '']'' was placed in Copernicus' hands on the day he died, so that he could take farewell of his ''opus vitae''. He supposedly woke from a ]-induced ], looked at his book, and died peacefully. Legend says that the first printed copy of '']'' was placed in Copernicus' hands on the day he died, so that he could take farewell of his ''opus vitae''. He supposedly woke from a ]-induced ], looked at his book, and died peacefully.

Revision as of 04:23, 6 February 2006

Nicolaus Copernicus

Nicolaus Copernicus (Polish: Mikołaj Kopernik, German: Nikolaus Kopernikus; February 19, 1473May 24, 1543) was a Polish astronomer, mathematician, physician, jurist, administrator and economist. His greatest legacy is the development of a scientifically-useful heliocentric (Sun-centered) theory of the solar system.

Copernicus worked in Royal Prussia as a church canon, governor, administrator, economist, jurist, physician, astrologer and, in conducting defense against the Teutonic Order, as a military leader. Amid all his responsibilities, he treated astronomy as a hobby. However, his formulation of how the Sun rather than the Earth is at the center of the universe is considered one of the most important scientific hypotheses ever made, as it came to mark the starting point of modern astronomy and, in turn, modern science. It also encouraged young astronomers, scientists and scholars to take a more skeptical attitude toward established dogma.


Biography

Toruń City Hall.

Copernicus was born in 1473 at Toruń (Hanse city Thorn) in the Polish province of Royal Prussia. His father Nikolas, a citizen of Kraków, then the capital of Poland, had moved to Toruń in 1460 once the war with the Teutonic Knights was concluded, and had become a respected citizen of that city. Copernicus was ten when his father, a wealthy businessman and copper trader, died. Little is known of Copernicus' mother, Barbara Watzenrode, who appears to have predeceased her husband. Copernicus' maternal uncle, Lucas Watzenrode, a church canon and later Prince-Bishop governor of Warmia, reared him and his three siblings after the death of Copernicus' father. Copernicus had a brother and two sisters:

  • the brother, Andreas, became a canon at Frombork (Frauenburg);
  • Barbara became a Benedictine nun; and
  • Katharina married a businessman and city councillor, Barthel Gertner.

In 1491 Copernicus enrolled at the Jagiellonian University in Cracow, and here for the first time encountered astronomy, thanks to his teacher Albert Brudzewski. This science soon fascinated him, as shown by his books (later carried off as war booty by the Swedes during "The Deluge", and now at the Uppsala University Library). After four years at Cracow, followed by a brief stay at Toruń, he went to Italy, where he studied law and medicine at the universities of Bologna and Padua. His bishop-uncle financed his education and wished for him to become a bishop as well. However, while studying canon and civil law at Ferrara, Copernicus met the famous astronomer, Domenico Maria Novara da Ferrara. Copernicus attended his lectures and became his disciple and assistant. The first observations that Copernicus made in 1497, together with Novara, are recorded in Copernicus' epochal book, De revolutionibus orbium coelestium.

Copernicus-Monument by Bertel Thorvaldsen in front of the Polish Academy of Sciences in Warsaw

In 1497 Copernicus' uncle was ordained Bishop of Warmia, and Copernicus was named a canon at Frombork (Frauenburg) Cathedral, but he waited in Italy for the great Jubilee of 1500. Copernicus went to Rome, where he observed a lunar eclipse and gave some lectures in astronomy or mathematics.

He would thus have visited Frombork only in 1501. As soon as he arrived, he requested and obtained permission to return to Italy to complete his studies at Padua (with Guarico and Fracastoro) and at Ferrara (with Giovanni Bianchini), where in 1503 he received his doctorate in canon law. It has been supposed that it was in Padua that he encountered passages from Cicero and Plato about opinions of the ancients on the movement of the Earth, and formed the first intuition of his own future theory. His collection of observations and ideas pertinent to his theory began in 1504.

Having left Italy at the end of his studies, he came to live and work at Frombork. Some time before his return to Warmia, he had received a position at the Collegiate Church of the Holy Cross in Wroclaw (Breslau), Silesia, which he would resign a few years before his death. Through the rest of his life he made astronomical observations and calculations, but always in his spare time and never as a profession.

Copernicus worked for years with the Prussian diet on monetary reform and published some studies about the value of money; as governor of Warmia, he administered taxes and dealt out justice. It was at this time (beginning in 1519, the year of Thomas Gresham's birth) that Copernicus came up with one of the earliest iterations of the theory now known as Gresham's Law. During these years he also traveled extensively on government business and as a diplomat, on behalf of the Prince-Bishop of Warmia.

In 1514 he made his Commentariolus — a short handwritten text describing his ideas about the heliocentric hypothesis — available to friends. Thereafter he continued gathering evidence for a more detailed work. During the war between the Teutonic Order and the Kingdom of Poland (15191524) Copernicus successfully defended Allenstein (Olsztyn) at the head of royal troops besieged by the forces of Albert of Brandenburg.

"Astronomer Copernicus: Conversation with God." Painting by Jan Matejko.

In 1533 Albert Widmannstadt delivered a series of lectures in Rome outlining Copernicus' theory. By 1536 Copernicus' work was already in definitive form, and some rumors about his theory had reached scientists all over Europe. From many parts of the continent, Copernicus received invitations to publish, but he feared persecution for his revolutionary work by the establishment. Cardinal Nicola Schönberg of Capua wrote, asking him to communicate his ideas more widely and requesting a copy for himself; "Therefore, learned man, without wishing to be inopportune, I beg you most emphatically to communicate your discovery to the learned world, and to send me as soon as possible your theories about the Universe, together with the tables and whatever else you have pertaining to the subject." Some have suggested that this note may have made Copernicus leery of publication, while others have suggested that the Church wanted to ensure that his ideas were published.

Copernicus was still completing his work (even if he was not convinced that he wanted to publish it) when in 1539 Georg Joachim Rheticus, a great mathematician from Wittenberg, arrived in Frombork. Philipp Melanchthon had arranged for Rheticus to visit several astronomers and study with them. Rheticus became a disciple of Copernicus' and stayed with him for two years, during which he wrote a book, Narratio prima, outlining the essence of the theory.

In 1542, in Copernicus' name, Rheticus published a treatise on trigonometry (later included in the second book of De revolutionibus). Under strong pressure from Rheticus, and having seen that the first general reception of his work had not been unfavorable, Copernicus finally agreed to give the book to his close friend Tiedemann Giese, bishop of Chełmno (Kulm), to be delivered to Rheticus for printing at Nuremberg (Nürnberg).

Legend says that the first printed copy of De revolutionibus was placed in Copernicus' hands on the day he died, so that he could take farewell of his opus vitae. He supposedly woke from a stroke-induced coma, looked at his book, and died peacefully.

Copernicus was buried in Frombork Cathedral. Archeologists searching for his remains had failed to locate them, though they had found interesting graves from various periods. On November 3, 2005, archeologists announced that in August they had recovered Copernicus' skull (see Grave below).

The Copernican heliocentric system

Earlier theories

Much has been written about earlier heliocentric theories. Philolaus (4th century BC) was one of the first to hypothesize movement by the Earth, probably inspired by Pythagoras' theories about a spherical Globe.

Aristarchus of Samos in the 3rd century BC had developed some theories of Heraclides Ponticus (speaking of a revolution by Earth on its axis) to propose what was, so far as is known, the first serious model of a heliocentric solar system. His work about a heliocentric system has not survived, so one may only speculate about what led him to his conclusions. It is notable that, according to Plutarch, a contemporary of Aristarchus accused him of impiety for "putting the Earth in motion."

Aryabhata from India was the first to note that Earth is round. He says "Bhumukha sarvato golah" (Earth is round) and Bhaskara I, also anticipated Copernicus' discoveries by about 1,000 years. The work of the 14th-century Arab astronomer Ibn al-Shatir contains findings similar to Copernicus', and it has been suggested that Copernicus might have been influenced by them.

Copernicus cited Aristarchus and Philolaus in an early manuscript of his book which survives, stating: "Philolaus believed in the mobility of the earth, and some even say that Aristarchus of Samos was of that opinion." For reasons unknown, he struck this passage before publication of his book.

Inspiration came to Copernicus not from observation of the planets, but from reading two authors. In Cicero he found an account of the theory of Hicetas. Plutarch provided an account of the Pythagoreans Heraclides Ponticus, Philolaus, and Ecphantes. These authors had proposed a moving earth that revolved around a central sun. Copernicus did not attribute his inspiration to Aristarchus as is sometimes stated. When Copernicus' book was published, it contained an unauthorized preface by the Lutheran theologian Andreas Osiander. This cleric stated that Copernicus wrote his heliocentric account of the earth's movement as a mere mathematical hypothesis, not as an account that contained truth or even probability. This was apparently written to soften any religious backlash against the book, but there is no evidence that Copernicus considered the heliocentric model as merely mathematically convenient, separate from reality. Copernicus' hypothesis contradicted the account of the sun's movement around the earth that appears in the Old Testament (Joshua 10:13).

It has been argued that in developing the mathematics of heliocentrism Copernicus drew on, not just the Greek, but the Arabic tradition of mathethematics, especially the work of Nasir al-Din al-Tusi and Mu’ayyad al-Din al-‘Urdi.

The Ptolemaic system

The prevailing theory in Europe as Copernicus was writing was that created by Ptolemy in his Almagest, dating from about 150 A.D.. The Ptolemaic system drew on many previous theories that viewed Earth as a stationary center of the universe. Stars were embedded in a large outer sphere which rotated relatively rapidly, while the planets dwelt in smaller spheres between — a separate one for each planet. To account for apparent anomalies to this view, such as the retrograde motion observed in many planets, a system of epicycles was used, by which a planet rotated on a small axis while also rotating on a larger axis around the Earth. Some planets were assigned "major" epicycles (by which retrograde motion could be observed) and "minor" epicycles (which simply warped the overall rotation).

A complementary theory to Ptolemy's employed homocentric spheres: the spheres within which the planets rotated, could themselves rotate somewhat. Also popular with astronomers were variations such as eccentrics — by which the rotational axis was offset and not completely at the center — or that added epicycles to epicycles.

Ptolemy's unique contribution to this theory was the idea of an equant — a complicated addition which specified that, when measuring the rotation of the Sun, one sometimes used the central axis of the universe, but sometimes one set at a different location. This had an overall effect of making certain orbits "wobble," a fact that would greatly bother Copernicus (such wobbling rendered implausible the idea of material "spheres" in which the planets rotated). In the end, after all these complications, the astronomers could still not get observation and theory to match up exactly. In Copernicus' day, the most up-to-date version of the Ptolomaic system was that of Peurbach (1423-1461) and Regiomontanus (1436-1476).

Copernican theory

Copernicus' major theory was published in the book, De revolutionibus orbium coelestium (On the Revolutions of the Heavenly Spheres) in the year of his death, 1543, though he had arrived at his theory several decades earlier.

Monument to Copernicus next to the Jagiellonian University's Collegium Novum (New College) in Cracow.

The book marks the beginning of the shift away from a geocentric (and anthropocentric) universe with the Earth at its center. Copernicus held that the Earth is another planet revolving around the fixed sun once a year, and turning on its axis once a day. He arrived at the correct order of the known planets and explained the precession of the equinoxes correctly by a slow change in the position of the Earth's rotational axis. He also gave a clear account of the cause of the seasons: that the Earth's axis is not perpendicular to the plane of its orbit. He added another motion to the Earth, by which the axis is kept pointed throughout the year at the same place in the heavens; since Galileo Galilei, it has been recognized that for the Earth not to point to the same place would have been a motion.

Copernicus also replaced Ptolemy's equant circles with more epicycles. This is the main source of the statement that Copernicus' system had even more epicycles than Ptolemy's. With this change, Copernicus' system showed only uniform circular motions, correcting what he saw as the chief inelegance in Ptolemy's system. But while Copernicus put the Sun at the center of the celestial spheres, he did not put it at the exact center of the universe, but near it.

Copernicus' system was not experimentally better than Ptolemy's model. Copernicus was aware of this and could not present any observational "proof" in his manuscript, relying instead on arguments about what would be a more complete and elegant system. From publication until about 1700, few astronomers were convinced by the Copernican system, though the book was relatively widely circulated (around 500 copies are known to still exist, which is a large number by the scientific standards of the time). Many astronomers, however, accepted some aspects of the theory at the expense of others, and his model did have a large influence on later scientists such as Galileo and Johannes Kepler, who adopted, championed and (especially in Kepler's case) sought to improve it. Galileo's observation of the phases of Venus produced the first observational evidence for Copernicus' theory.

The Copernican system can be summarized in seven propositions, as Copernicus himself collected them in a Compendium of De revolutionibus that was found and published in 1878.

The seven parts of Copernicus' theory are:

1. There is no one center in the universe.

2. The Earth's center is not the center of the universe.

3. The center of the universe is near the sun.

4. The distance from the Earth to the sun is imperceptible compared with the distance to the stars.

5. The rotation of the Earth accounts for the apparent daily rotation of the stars.

6. The apparent annual cycle of movements of the sun is caused by the Earth revolving round it.

7. The apparent retrograde motion of the planets is caused by the motion of the Earth from which one observes.


Whether these propositions were "revolutionary" or "conservative" was a topic of debate in the late twentieth century. Thomas Kuhn argued that Copernicus only transferred "some properties to the sun many astronomical functions previously attributed to the earth." Other historians have since argued that Kuhn underestimated what was "revolutionary" about Copernicus' work, and emphasized the difficulty Copernicus would have had in putting forward a new astronomical theory relying alone on simplicity in geometry, given that he had no experimental evidence.

De revolutionibus orbium coelestium

Title page of De revolutionibus Orbium Coelestium (Part VI, Basel edition)

Main article: De revolutionibus orbium coelestium.

Copernicus' major work, On the Revolutions of the Heavenly Spheres (1543), was the result of decades of labor. It opened with an originally anonymous preface by Andreas Osiander, a theologian friend of Copernicus, who urged that the theory, which was considered a tool that allows simpler and more accurate calculations, did not necessarily have implications outside the limited realm of astronomy. Copernicus' actual book began with a letter from his (by then deceased) friend Nicola Schönberg, the Archbishop of Capua, urging Copernicus to publish his theory. Then, in a lengthy introduction, Copernicus dedicated the book to Pope Paul III, explaining his ostensible motive in writing the book as relating to the inability of earlier astronomers to agree on an adequate theory of the planets, and noting that if his system increased the accuracy of astronomical predictions it would allow the Church to develop a more accurate calendar. At that time, a reform of the Julian Calendar was considered necessary and one of the major reasons for Church funding of astronomy.

The work itself was then divided into six books:

  1. General vision of the heliocentric theory, and a summarized exposition of his idea of the World
  2. Mainly theoretical, presents the principles of spherical astronomy and a list of stars (as a basis for the arguments developed in the subsequent books)
  3. Mainly dedicated to the apparent motions of the Sun and to related phenomena
  4. Description of the Moon and its orbital motions
  5. Concrete exposition of the new system
  6. Concrete exposition of the new system

Copernicus and Copernicanism

Nicolaus Copernicus

Copernicus' theory is of extraordinary importance in the history of human knowledge. Many authors suggest that only Euclid's geometry, Isaac Newton's physics and Charles Darwin's theory of evolution have exerted a comparable influence on human culture in general and on science in particular.

Many meanings have been ascribed to Copernicus' theory, apart from its strictly scientific import. His work affected religion as well as science, dogma as well as freedom of scientific inquiry. Copernicus' rank as a scientist is often compared with that of Galileo.

Copernicus' work contradicted then-accepted religious dogma: it could be inferred that there was no need of an entity (God) that granted a soul, power and life to the World and to human beings — science could explain everything that was attributed to Him.

Copernicanism, however, also opened a way to immanence, the view that a divine force, or a divine being, pervades all things that exist — a view that has since been developed further in modern philosophy. Immanentism also leads to subjectivism: to the theory that it is perception that creates reality, that there is no underlying reality that exists independent of perception. Thus some argue that Copernicanism demolished the foundations of medieval science and metaphysics.

A corollary of Copernicanism is that scientific law need not be congruent with appearance. This contrasts with Aristotle's system, which placed much more importance on the derivation of knowledge through the senses.

Copernicus' concept marked a scientific revolution. Some, indeed, equate it with the initiation of "the scientific revolution" . Immanuel Kant captured the symbolic character of Copernicus' revolution — its transcendent rationalism — postulating that it was human rationality that was the true interpreter of observed phenomena. More recent philosophers, too, have found continuing validity and philosophical meaning in Copernicanism.

Quotes

Goethe:

"Of all discoveries and opinions, none may have exerted a greater effect on the human spirit than the doctrine of Copernicus. The world had scarcely become known as round and complete in itself when it was asked to waive the tremendous privilege of being the center of the universe. Never, perhaps, was a greater demand made on mankind — for by this admission so many things vanished in mist and smoke! What became of our Eden, our world of innocence, piety and poetry; the testimony of the senses; the conviction of a poetic — religious faith? No wonder his contemporaries did not wish to let all this go and offered every possible resistance to a doctrine which in its converts authorized and demanded a freedom of view and greatness of thought so far unknown, indeed not even dreamed of."

Copernicus:

"For I am not so enamored of my own opinions that I disregard what others may think of them. I am aware that a philosopher's ideas are not subject to the judgement of ordinary persons, because it is his endeavor to seek the truth in all things, to the extent permitted to human reason by God. Yet I hold that completely erroneous views should be shunned. Those who know that the consensus of many centuries has sanctioned the conception that the earth remains at rest in the middle of the heaven as its center would, I reflected, regard it as an insane pronouncement if I made the opposite assertion that the earth moves.
"For when a ship is floating calmly along, the sailors see its motion mirrored in everything outside, while on the other hand they suppose that they are stationary, together with everything on board. In the same way, the motion of the earth can unquestionably produce the impression that the entire universe is rotating.
"Therefore alongside the ancient hypotheses, which are no more probable, let us permit these new hypotheses also to become known, especially since they are admirable as well as simple and bring with them a huge treasure of very skillful observations. So far as hypotheses are concerned, let no one expect anything certain from astronomy, which cannot furnish it, lest he accept as the truth ideas conceived for another purpose, and depart from this study a greater fool than when he entered it. Farewell."

Grave

In August 2005, a team of archeologists led by Jerzy Gąssowski, head of an archaeology and anthropology institute in Pułtusk, discovered what they believe to be Copernicus' grave and remains, after scanning beneath the floor of Frombork Cathedral. The find came after a year of searching, and the discovery was announced only after further research, on November 3. Gąssowski said he was "almost 100 percent sure it is Copernicus". Forensic experts used the skull to reconstruct a face that closely resembled the features — including a broken nose and a scar above the left eye — on a Copernicus self-portrait. The experts also determined that the skull had belonged to a man who had died about age 70 — Copernicus' age at the time of his death.

The grave was in poor condition, and not all the remains were found. The archeologists hoped to find relatives of Copernicus in order to attempt DNA identification.

See also

References

  • Angus Armitage (1951). The World of Copernicus, New York, Mentor Books. ISBN 0846409798.
  • David C. Goodman and Colin A. Russell, eds. (1991). The Rise of Scientific Europe, 1500-1800. Dunton Green, Sevenoaks, Kent: Hodder & Stoughton: The Open University. ISBN 034055861X.
  • Thomas Kuhn (1957). The Copernican Revolution: Planetary Astronomy in the Development of Western Thought, Harvard University Press. ISBN 0674171004.
  • Owen Gingerich (2004). The Book Nobody Read, Penguin Books. ISBN 0143034766.

External links

External links to sources

External links about Copernicus

External links about De Revolutionibus

External links related to Copernicus legacy

German-Polish cooperation in the tradition of Copernicus

Categories:
Nicolaus Copernicus: Difference between revisions Add topic