Misplaced Pages

Gompertz distribution: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 14:27, 27 November 2011 edit194.254.137.115 (talk)No edit summary← Previous edit Revision as of 14:28, 27 November 2011 edit undo194.254.137.115 (talk)No edit summaryNext edit →
Line 47: Line 47:
* <math>\eta \geq 1\,</math> the probability density function has its mode at 0. * <math>\eta \geq 1\,</math> the probability density function has its mode at 0.
* <math>\eta < 1\,</math> the probability density function has its mode at * <math>\eta < 1\,</math> the probability density function has its mode at
::<math>\<math>x*}=-\frac{\ln(z^\star)}{b}\, \qquad 0 < z^\star < 1</math> ::<math>\x*}=-\frac{\ln(z^\star)}{b}\, \qquad 0 < z^\star < 1</math>
:where <math>z^\star\,</math> is the smallest root of :where <math>z^\star\,</math> is the smallest root of
::<math>\eta^2z^2 - \eta(3 + \eta)z + \eta + 1 = 0\,,</math> ::<math>\eta^2z^2 - \eta(3 + \eta)z + \eta + 1 = 0\,,</math>

Revision as of 14:28, 27 November 2011


Shifted Gompertz
Probability density functionProbability density plots of shifted Gompertz distributions
Cumulative distribution functionCumulative distribution plots of shifted Gompertz distributions
Parameters b > 0 {\displaystyle b>0} scale (real)
η > 0 {\displaystyle \eta >0} shape (real)
Support x R + {\displaystyle x\in \mathbb {R} ^{+}}
PDF b e b x e η e b x [ 1 + η ( 1 e b x ) ] {\displaystyle be^{-bx}e^{-\eta e^{-bx}}\left}
CDF ( 1 e b x ) e η e b x {\displaystyle \left(1-e^{-bx}\right)e^{-\eta e^{-bx}}}
Mean

( 1 / b ) { E [ ln ( X ) ] ln ( η ) } {\displaystyle (-1/b)\{\mathrm {E} -\ln(\eta )\}\,} where X = η e b x {\displaystyle X=\eta e^{-bx}\,} and

E [ ln ( X ) ] = [ 1 + 1 / η ] 0 η e X [ ln ( X ) ] d X 1 / η 0 η X e X [ ln ( X ) ] d X {\displaystyle {\begin{aligned}\mathrm {E} =&\!\!\int _{0}^{\eta }\!\!\!\!e^{-X}dX\\&-1/\eta \!\!\int _{0}^{\eta }\!\!\!\!Xe^{-X}dX\end{aligned}}}
Mode 0 {\displaystyle 0\,} for η 0.5 {\displaystyle \eta \leq 0.5\,} , ( 1 / b ) ln ( z ) {\displaystyle (-1/b)\ln(z^{\star })\,} for η > 0.5 {\displaystyle \eta >0.5\,} where z = [ 3 + η ( η 2 + 2 η + 5 ) 1 / 2 ] / ( 2 η ) {\displaystyle z^{\star }=/(2\eta )}
Variance

( 1 / b 2 ) ( E { [ ln ( X ) ] 2 } ( E [ ln ( X ) ] ) 2 ) {\displaystyle (1/b^{2})(\mathrm {E} \{^{2}\}-(\mathrm {E} )^{2})\,}

where X = η e b x {\displaystyle X=\eta e^{-bx}\,} and E { [ ln ( X ) ] 2 } = [ 1 + 1 / η ] 0 η e X [ ln ( X ) ] 2 d X 1 / η 0 η X e X [ ln ( X ) ] 2 d X {\displaystyle {\begin{aligned}\mathrm {E} \{^{2}\}=&\!\!\int _{0}^{\eta }\!\!\!\!e^{-X}^{2}\,dX\\&{}-1/\eta \!\!\int _{0}^{\eta }\!\!\!\!Xe^{-X}^{2}\,dX\end{aligned}}}

The Gompertz distribution is an extreme value (reverted Gumbel distribution) distribution which is truncated at zero. It has been used as a model of customer lifetime.

Specification

Probability density function

The probability density function of the Gompertz distribution is:

f ( x ; b , η ) = b e b x e η e b x [ 1 + η ( 1 e b x ) ] f o r   x > 0 {\displaystyle f(x;b,\eta )=be^{-bx}e^{-\eta e^{-bx}}\left\mathrm {for} \ x>0\,\!}

where b > 0 {\displaystyle b>0} is the scale parameter and η > 0 {\displaystyle \eta >0} is the shape parameter of the Gompertz distribution.

Cumulative distribution function

The cumulative distribution function of the Gompertz distribution is:

F ( x ; b , η ) = ( 1 e b x ) e η e b x f o r   x > 0. {\displaystyle F(x;b,\eta )=\left(1-e^{-bx}\right)e^{-\eta e^{-bx}}\mathrm {for} \ x>0.\,\!}

Properties

The Gompertz distribution is right-skewed for all values of η {\displaystyle \eta } .

Shapes

The Gompertz density function can take on different shapes depending on the values of the shape parameter η {\displaystyle \eta } :

  • η 1 {\displaystyle \eta \geq 1\,} the probability density function has its mode at 0.
  • η < 1 {\displaystyle \eta <1\,} the probability density function has its mode at
Failed to parse (unknown function "\x"): {\displaystyle \x*}=-\frac{\ln(z^\star)}{b}\, \qquad 0 < z^\star < 1}
where z {\displaystyle z^{\star }\,} is the smallest root of
η 2 z 2 η ( 3 + η ) z + η + 1 = 0 , {\displaystyle \eta ^{2}z^{2}-\eta (3+\eta )z+\eta +1=0\,,}
which is
z = [ 3 + η ( η 2 + 2 η + 5 ) 1 / 2 ] / ( 2 η ) . {\displaystyle z^{\star }=/(2\eta ).}

Related distributions

The Gompertz distribution is a natural conjugate to a gamma distribution. If η {\displaystyle \eta } varies according to a gamma distribution with shape parameter α {\displaystyle \alpha } and scale parameter β {\displaystyle \beta } (mean = α β {\displaystyle \alpha \beta } ), the cumulative distribution function is Gamma/Gompertz (G/G).

See also

Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Category: