Misplaced Pages

Palladium-catalyzed coupling reactions: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 05:44, 20 July 2011 editRoches (talk | contribs)Extended confirmed users2,681 editsm Changed carbene link to the article specifically about N-heterocyclic carbenes← Previous edit Revision as of 15:24, 25 April 2012 edit undo128.230.29.203 (talk) See alsoNext edit →
Line 24: Line 24:
==See also== ==See also==
* ] * ]
* ]


==References== ==References==

Revision as of 15:24, 25 April 2012

Sonogashira coupling reaction mechanism

Palladium compounds are used as a catalyst in many coupling reactions, usually as a homogeneous catalyst. Examples include:

Typical palladium catalysts used include the following compounds:

Unoptimized reactions typically use 10-15 mol% of palladium; where optimized, catalyst loadings can be on the order of 0.1 mol % or below. Many exotic ligands and chiral catalysts have been reported, but they are largely not available commercially, and do not find widespread use. Much work is being done on replacing the phosphine ligands with other classes, such as Arduengo-type carbene complexes, as the phosphine ligands are typically oxygen sensitive (easily oxidized), and are labile (requiring additional free ligands).

With these reactions becoming ubiquitous, there has been interest in better techniques for removing the palladium catalyst. Metal scavengers such as Smopex or resins such as QuadruPure and ISOLUTE promise more efficient separation than ordinary column chromatography.

In 2010, the Nobel Prize in Chemistry was awarded to Richard F. Heck, Ei-ichi Negishi and Akira Suzuki for their work on palladium-catalyzed cross couplings in organic synthesis.

See also

References

  1. http://www.alfa.com/en/GP100w.pgm?DSSTK=044710
  2. http://www.sigmaaldrich.com/chemistry/drug-discovery/medicinal-chemistry/quadrapure.html
  3. http://www.biotage.com/DynPage.aspx?id=36161
  4. http://nobelprize.org/nobel_prizes/chemistry/laureates/2010/
Categories: