Misplaced Pages

Solar eclipse: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 23:55, 6 May 2006 view sourceMbeychok (talk | contribs)13,171 editsm Types of solar eclipses: Fixed reference← Previous edit Revision as of 04:35, 7 May 2006 view source Finell (talk | contribs)Extended confirmed users13,207 editsm Types of solar eclipses: Fix typo (possibly mine)Next edit →
Line 19: Line 19:
The Earth's distance from the Sun is about 400 times the Earth's distance from the Moon. The Sun's ] is about 400 times the diameter of the Moon. Because, by coincidence, these ratios are approximately the same, the sizes of the Sun and the Moon as seen from Earth appear to be approximately the same: about 0.5 ] in angular measure. The Earth's distance from the Sun is about 400 times the Earth's distance from the Moon. The Sun's ] is about 400 times the diameter of the Moon. Because, by coincidence, these ratios are approximately the same, the sizes of the Sun and the Moon as seen from Earth appear to be approximately the same: about 0.5 ] in angular measure.


Because the Moon's orbit around the Earth is an ], the Moon's distance from the Earth varies, so the apparent sizes of the Sun and Moon likewise vary.<ref>, University of Tennessee</ref><ref>, P. Tiedt</ref> The ] is the ratio of the apparent size of the Moon to the apparent size of the Sun during an eclipse. An eclipse when the Moon is near its closest distance from the Earth (i.e., near its ]) will be a total eclipse because the Moon will appear to be large enough to cover completely the Sun's bright disk, or ]; a total eclipse has a magnitude greater than 1. Conversely, an eclipse when the Moon is near it farthest distance from the Earth (i.e., near its ]), will be an annular eclipse because the Moon will appear to be slightly smaller than the Sun; the magnitude of an annular eclipse is less than 1. Slightly more solar eclipses are annular than total because, on average, the Moon lies too far away from Earth to cover the Sun completely. A hybrid eclipse occurs when the magnitude of an eclipse is very close to 1: the eclipse will appear to be total at some locations on Earth and annular at other locations.<ref>, O. Staiger</ref> Because the Moon's orbit around the Earth is an ], the Moon's distance from the Earth varies, so the apparent sizes of the Sun and Moon likewise vary.<ref>, University of Tennessee</ref><ref>, P. Tiedt</ref> The ] is the ratio of the apparent size of the Moon to the apparent size of the Sun during an eclipse. An eclipse when the Moon is near its closest distance from the Earth (i.e., near its ]) will be a total eclipse because the Moon will appear to be large enough to cover completely the Sun's bright disk, or ]; a total eclipse has a magnitude greater than 1. Conversely, an eclipse when the Moon is near its farthest distance from the Earth (i.e., near its ]), will be an annular eclipse because the Moon will appear to be slightly smaller than the Sun; the magnitude of an annular eclipse is less than 1. Slightly more solar eclipses are annular than total because, on average, the Moon lies too far away from Earth to cover the Sun completely. A hybrid eclipse occurs when the magnitude of an eclipse is very close to 1: the eclipse will appear to be total at some locations on Earth and annular at other locations.<ref>, O. Staiger</ref>


The Earth's orbit around the Sun is also elliptical, so the Earth's distance from the Sun varies throughout the year. This also affects the apparent sizes of the Sun and Moon, but not so much as the Earth's varying distance from the Moon. When the Earth approaches its farthest distance from the Sun (the ]) in July, this tends to favor a total eclipse. As the Earth approaches its closest distance from the Sun (the ]) in January, this tends to favor an annular eclipse. The Earth's orbit around the Sun is also elliptical, so the Earth's distance from the Sun varies throughout the year. This also affects the apparent sizes of the Sun and Moon, but not so much as the Earth's varying distance from the Moon. When the Earth approaches its farthest distance from the Sun (the ]) in July, this tends to favor a total eclipse. As the Earth approaches its closest distance from the Sun (the ]) in January, this tends to favor an annular eclipse.

Revision as of 04:35, 7 May 2006

Photo taken during the 1999 eclipse.

A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partially obscuring Earth's view of the Sun. This configuration can only occur during a New Moon, when the Sun and Moon are in conjunction as seen from the Earth. In ancient times, and in some cultures today, solar eclipses are attributed to mythical properties. Total solar eclipses can be frightening events for people unaware of their astronomical nature, as the Sun suddenly disappears in the middle of the day and the sky darkens in a matter of minutes. However, the spiritual attribution of solar eclipses is now largely disregarded.

Total solar eclipses are very rare events for any given place on Earth because totality is only seen where the Moon's umbra touches the Earth's surface. A total solar eclipse is a spectacular natural phenomenon and many people consider travel to remote locations in order to observe one.

The 1999 total eclipse in Europe, said by some to be the most-watched eclipse in human history, helped to increase public awareness of the phenomenon. This was illustrated by the number of people willing to make the trip to witness the 2005 annular eclipse and the 2006 total eclipse. The next total solar eclipse will occur on August 1, 2008.

Types of solar eclipses

File:RingfoermigeSonnenfinsternis.jpg
An annular eclipse.

There are four types of solar eclipses:

  • A total eclipse occurs when the Sun is completely obscured by the Moon. The intensely bright disk of the Sun is replaced by the dark outline of the Moon, and the much fainter corona is visible (see image above). During any one eclipse, totality is visible only from at most a narrow track on the surface of the Earth.
  • An annular eclipse occurs when the Sun and Moon are exactly in line, but the apparent size of the Moon is smaller than that of the Sun. Hence the Sun appears as a very bright ring, or annulus, surrounding the outline of the Moon.
  • A hybrid eclipse is intermediate between a total and annular eclipse. At some points on the surface of the Earth it is visible as a total eclipse, whereas at others it is annular. Hybrid eclipses are rather rare.
  • A partial eclipse occurs when the Sun and Moon are not exactly in line, and the Moon only partially obscures the Sun. This phenomenon can usually be seen from a large part of the Earth outside of the track of an annular or total eclipse. However, some eclipses can only be seen as a partial eclipse, because the umbra never intersects the Earth's surface.

The Earth's distance from the Sun is about 400 times the Earth's distance from the Moon. The Sun's diameter is about 400 times the diameter of the Moon. Because, by coincidence, these ratios are approximately the same, the sizes of the Sun and the Moon as seen from Earth appear to be approximately the same: about 0.5 degree of arc in angular measure.

Because the Moon's orbit around the Earth is an ellipse, the Moon's distance from the Earth varies, so the apparent sizes of the Sun and Moon likewise vary. The magnitude of an eclipse is the ratio of the apparent size of the Moon to the apparent size of the Sun during an eclipse. An eclipse when the Moon is near its closest distance from the Earth (i.e., near its perigee) will be a total eclipse because the Moon will appear to be large enough to cover completely the Sun's bright disk, or photosphere; a total eclipse has a magnitude greater than 1. Conversely, an eclipse when the Moon is near its farthest distance from the Earth (i.e., near its apogee), will be an annular eclipse because the Moon will appear to be slightly smaller than the Sun; the magnitude of an annular eclipse is less than 1. Slightly more solar eclipses are annular than total because, on average, the Moon lies too far away from Earth to cover the Sun completely. A hybrid eclipse occurs when the magnitude of an eclipse is very close to 1: the eclipse will appear to be total at some locations on Earth and annular at other locations.

The Earth's orbit around the Sun is also elliptical, so the Earth's distance from the Sun varies throughout the year. This also affects the apparent sizes of the Sun and Moon, but not so much as the Earth's varying distance from the Moon. When the Earth approaches its farthest distance from the Sun (the aphelion) in July, this tends to favor a total eclipse. As the Earth approaches its closest distance from the Sun (the perihelion) in January, this tends to favor an annular eclipse.

Terminology

Central eclipse is often used as a generic term for a total, annular or hybrid eclipse. This is, however, not completely correct: the definition of a central eclipse is an eclipse during which the central line of the umbra touches the Earth's surface. It is possible, though extremely rare, that part of the umbra intersects with Earth (thus creating an annular or total eclipse), but not its central line. This is then called a non-central total or annular eclipse.

The term eclipse itself may be technically a misnomer: the phenomenon of the Moon passing in front of the Sun is not an eclipse, but an occultation. Properly speaking, an eclipse occurs when one object passes into the shadow cast by another object. When the Moon disappears at Full Moon by passing into Earth's shadow, the event is properly called a lunar eclipse, but when the Moon passes in front of the Sun, we see an occultation of the Sun by the Moon. Therefore, the rarely used proper term for a solar eclipse is eclipse of the Earth.

Eclipse predictions

Geometry of an eclipse

Diagram of solar eclipse (not to scale).

The diagram to the right shows the alignment of the Sun, Moon and Earth during a solar eclipse. The dark gray region below the moon is the umbra, where the Sun is completely obscured by the Moon. The small area where the umbra touches the Earth's surface is where a total eclipse can be seen. The larger light gray area is the penumbra, in which only a partial eclipse can be seen.

The Moon's orbit around the Earth is inclined at an angle of just over 5 degrees to the plane of the Earth's orbit around the Sun (the ecliptic). Because of this, at the time of a New Moon, the Moon will usually pass above or below the Sun. A solar eclipse can occur only when the New Moon occurs close to one of the points (known as nodes) where the Moon's orbit crosses the ecliptic.

As noted above, the Moon's orbit is also elliptical, which means that the distance of the Moon from the Earth can vary by about 6% from its average value. This means that the apparent size of the Moon is sometimes larger or smaller than average, and it is this effect that leads to the difference between total and annular eclipses. The distance of the Earth from the Sun also varies during the year, but this is a smaller effect. On average, the Moon appears to be slightly smaller than the Sun, so the majority (about 60%) of central eclipses are annular. It is only when the Moon is closer to the Earth than average (near its perigee) that a total eclipse occurs.

The Moon orbits the Earth in approximately 27.3 days, relative to a fixed frame of reference. This is known as the sidereal month. However, during one sidereal month, the Earth has rotated on its axis and around the Sun. This means that the average time between one New Moon and the next is longer, and is approximately 29.6 days. This is known as the synodic month, and corresponds to what is commonly called the lunar month.

The Moon crosses from south to north of the ecliptic at its ascending node. However, the nodes of the Moon's orbit are gradually moving in a retrograde motion, due to the action of the Sun's gravity on the Moon's motion, and they make a complete circuit every 18.5 years. This means that the time between each passage of the Moon through the ascending node is slightly shorter than the sidereal month. This period is called the draconitic month.

Finally, the Moon's perigee is moving forwards in its orbit, and makes a complete circuit in about 9 years. The time between one perigee and the next is known as the anomalistic month.

The Moon's orbit intersects with the ecliptic at the two nodes that are 180 degrees apart. Therefore, the New Moon occurs close to the nodes at two periods of the year approximately six months apart, and there will always be at least one solar eclipse during these periods. Sometimes the New Moon occurs close enough to a node during two consecutive months. This means that in any given year, there will always be at least two solar eclipses, and there can be as many as five. However, some are visible only as partial eclipses, because the umbra passes above Earth's north or south pole, and others are central only in remote regions of the Arctic or Antarctic.

Path of an eclipse

During a central eclipse, the Moon's umbra (or antumbra, in the case of an annular eclipse) moves rapidly from west to east across the Earth. The Earth is also rotating from west to east, but the umbra always moves faster than any given point on the Earth's surface, so it almost always appears to move in a roughly west-east direction across a map of the Earth (there are some rare exceptions to this which can occur during an eclipse of the midnight sun in Arctic or Antarctic regions).

The width of the track of a central eclipse varies according to the relative apparent diameters of the Sun and Moon. In the most favourable circumstances, when a total eclipse occurs very close to perigee, the track can be over 250 km wide and the duration of totality may be over 7 minutes. Outside of the central track, a partial eclipse can usually be seen over a much larger area of the Earth.

Occurrence and eclipse cycles

Total Solar Eclipse Paths: 1001–2000. This image was merged from 50 separate images from NASA.

Total solar eclipses are rare events. Although they occur somewhere on Earth approximately every 18 months, it has been estimated that they recur at any given place only once every 370 years, on average. Then, after waiting so long, the total eclipse only lasts for a few minutes, as the Moon's umbra moves eastward at over 1700 km/h. Totality can never last more than 7 min 40 s, and is usually much shorter: during each millennium there are typically fewer than 10 total solar eclipses exceeding 7 minutes. The last time this happened was June 30 1973. Observers aboard a Concorde aircraft were able to stretch totality to about 74 minutes by flying along the path of the Moon's umbra. The next eclipse of comparable duration will not occur until June 25, 2150. The longest total solar eclipse during the 8,000-year period from 3000 BC to 5000 AD will occur on July 16 2186, when totality will last 7 min 29 s.

If the date and time of any solar eclipse are known, it is possible to predict other eclipses using eclipse cycles. Two such cycles are the Saros and the Inex. The Saros cycle is probably the best known, and one of the most accurate, eclipse cycles. The Inex cycle is itself a poor cycle, but it is very convenient in the classification of eclipse cycles. After a Saros cycle finishes, a new Saros cycle begins one Inex later, hence its name: in-ex. A Saros cycle lasts 6,585.3 days (a little over 18 years), which means that after this period a practically identical eclipse will occur. The most notable difference will be a shift of 120° in longitude (due to the 0.3 days) and a little in latitude. A Saros series always starts with a partial eclipse at a pole, then shifts over the globe through a series of annular or total eclipses, and ends on the other pole a couple of millennia later.

Final totality

Due to tidal acceleration, the orbit of the Moon around the Earth is unstable, and becomes approximately 3.8 cm more distant each year. It is estimated that in 600 million years, the distance from the Earth to the Moon will have increased by 23500 km, meaning that it will no longer be able to completely cover the Sun's disk. This will be true even when the Moon is at perigee, and the Earth at aphelion.

A complicating factor is that the Sun will increase in size over this timescale. This makes it even more unlikely that the Moon will be able to cause a total eclipse. We can therefore say that the last total solar eclipse on Earth will occur in slightly less than 600 million years.

Historical solar eclipses

A solar eclipse of 15 June 763 BC mentioned in an Assyrian text is important for the Chronology of the Ancient Orient. This is the earliest solar eclipse mentioned in historical sources that has been identified beyond reasonable doubt. There have been other claims to date earlier eclipses, notably that of Mursili II (likely 1312 BC), in Babylonia, and also in China, but these are highly disputed and rely on much supposition.

Herodotus wrote that Thales of Miletus predicted an eclipse which occurred during a war between the Medians and the Lydians. Soldiers on both sides put down their weapons and declared peace as a result of the eclipse. Exactly which eclipse was involved has remained uncertain, although the issue has been studied by hundreds of ancient and modern authorities. One likely candidate took place on May 28, 585 BC, probably near the Halys river in the middle of modern Turkey.

An annular eclipse of the Sun occurred at Sardis on February 17 478 BC, while Xerxes was departing for his expedition against Greece, as Herodotus recorded. Hind and Chambers considered this absolute date more than a century ago. Herodotus also reports that another solar eclipse was observed in Sparta during the next year, on August 1, 477 BC. The sky suddenly darkened in the middle of the day, well after the battles of Thermopylae and Salamis, after the departure of Mardonius to Thessaly at the beginning of the spring of (477 BC) and his second attack on Athens, after the return of Cleombrotus to Sparta. Note that the modern conventional dates are different by a year or two, and that these two eclipse records have been ignored so far.

It has also been attempted to establish the exact date of Good Friday by means of solar eclipses, but this research has not yielded conclusive results.

Observing a solar eclipse

Photo taken in Valladolid (Spain) during the October 2005 annular eclipse.

Looking directly at the photosphere of the Sun (the bright disk of the Sun itself), even for just a few seconds, can cause permanent damage to the retina of the eye, because of the intense visible and invisible radiation that the photosphere emits. This damage can result in permanent impairment of vision, up to and including blindness. The retina has no sensitivity to pain, and the effects of retinal damage may not appear for hours, so there is no warning that injury is occurring.

Under normal conditions, the Sun is so bright that it is difficult to stare at it directly, so there is no tendency to look at it in a way that might damage the eye. However, during an eclipse, with so much of the Sun covered, it is easier and more tempting to stare at it. Unfortunately, looking at the Sun during an eclipse is just as dangerous as looking at it outside an eclipse, except during the brief period of totality, when the Sun's disk is completely covered (totality occurs only during a total eclipse and only very briefly; it does not occur during a partial or annular eclipse). Viewing the Sun's disk through any kind of optical aid (binoculars, a telescope, or even an optical camera viewfinder) is even more hazardous.

Glancing at the Sun with all or most of its disk visible is unlikely to result in permanent harm, as the pupil will close down and reduce the brightness of the whole scene. If the eclipse is near total, the low average amount of light causes the pupil to open. Unfortunately the remaining parts of the Sun are still just as bright, so they are now brighter on the retina than when looking at a full Sun. As the eye has a small fovea, for detailed viewing, the tendency will be to track the image on to this best part of the retina, causing damage.

Viewing partial and annular eclipses

File:Mennekens05b.jpg
The camera obscura effect during annularity in Madrid.
Crescent marks during partial eclipse as seen in Johannesburg on 21 June 2001

Viewing the Sun during partial and annular eclipses (and during total eclipses outside the brief period of totality) requires special eye protection, or indirect viewing methods. The Sun's disk can be viewed using appropriate filtration to block the harmful part of the Sun's radiation. Sunglasses are not safe, since they do not block the harmful and invisible infrared radiation which causes retinal damage. Only properly designed and certified solar filters should ever be used for direct viewing of the Sun's disk.

The safest way to view the Sun's disk is by indirect projection. This can be done by projecting an image of the disk onto a white piece of paper or card using a pair of binoculars (with one of the lenses covered), a telescope, or another piece of cardboard with a small hole in it (about 1 mm diameter), often called a pinhole camera. The projected image of the Sun can then be safely viewed; this technique can be used to observe sunspots, as well as eclipses. However, care must be taken to ensure that no one looks through the projector (telescope, pinhole, etc.) directly. Viewing the Sun's disk on a video display screen (provided by a video camera or digital camera) is safe, although the camera itself may be damaged by direct exposure to the Sun. The optical viewfinders provided with some video and digital cameras are not safe.

Viewing totality during total eclipses

Contrary to popular belief, it is safe to observe the total phase of a solar eclipse directly with the unaided eye, binoculars or a telescope, when the Sun's photosphere is completely covered by the Moon; indeed, this is a very spectacular and beautiful sight, and it is too dim to be seen through filters. The Sun's faint corona will be visible, and even the chromosphere, solar prominences, and possibly even a solar flare may be seen. However, it is important to stop directly viewing the Sun promptly at the end of totality. The exact time and duration of totality for the location from which the eclipse is being observed should be determined from a reliable source.

Baily beads.

Also very beautiful are the effects just before (and just after) totality. When the shrinking visible part of the photosphere becomes very small, Baily beads will occur (see picture). These are caused by the sunlight still being able to reach Earth through lunar valleys, but no longer where mountains are present. Totality then begins with the diamond ring effect, the last bright flash of sunlight. Note that it is not entirely safe to view Baily beads or the diamond ring without proper eye protection (because in both cases the photosphere is still visible).

Other observations

For astronomers, a total solar eclipse forms a rare opportunity to observe the corona (the outer layer of the Sun's atmosphere). Normally this is not visible because the photosphere is much brighter than the corona. According to the point reached in the solar cycle, the corona can appear rather small and symmetric, or large and fuzzy. It is very hard to predict this prior to totality.

During a solar eclipse special (indirect) observations can also be done with the unaided eye only. Normally the spots of light which fall through the small openings between the leaves of a tree, have a circular shape. These are images of the Sun. During a partial eclipse, the light spots will show the partial shape of the Sun, as seen on the picture. Another famous phenomenon is shadow bands (also known as flying shadows), which are similar to shadows on the bottom of a swimming pool. They only occur just prior to and after totality, and are very difficult to observe. Many professional eclipse chasers have never seen them.

During a partial eclipse, a related effect that can be seen is anisotropy in the shadows of objects. Particularly if the partial eclipse is nearly total, the unobscured part of the sun acts as an approximate line source of light. This means that objects cast shadows which have a very narrow penumbra in one direction, but a broad penumbra in the perpendicular direction.

Special observation campaigns

The original photograph of the 1919 eclipse which was claimed to confirm Einstein's theory of general relativity.

In 1919, the observation of a total solar eclipse helped to confirm Einstein's theory of general relativity. By comparing the apparent distance between two stars, with and without the Sun between them, the theoretical predictions about gravitational lenses were confirmed (though the data were ambiguous at the time). Of course the observation with the Sun between was only possible during totality, since the stars are visible then.

Over the years, some less important special observations took place:

Solar eclipse before sunrise or after sunset

The phenomenon of atmospheric diffraction makes it possible to observe the Sun (and hence a solar eclipse) even when it is slightly below the horizon. It is however possible for a solar eclipse to attain totality (or in the event of a partial eclipse, near totality) before (visual and actual) sunrise or after sunset from a particular location. When this occurs shortly before the former or after the latter, the sky will appear much darker than it would otherwise be immediately before sunrise or after sunset. On these occasions, an object (especially a planet, often Mercury) may be visible near the sunrise or sunset point of the horizon when it could not have been seen without the eclipse.

Simultaneous occurrence of eclipses and transits

In principle, the simultaneous occurrence of a Solar eclipse and a transit of a planet is possible. But these events are extremely rare because of their short durations. The next anticipated simultaneous occurrence of a Solar eclipse and a transit of Mercury will be on July 5, 6757, and a Solar eclipse and a transit of Venus is expected on April 5, 15232.

Only 5 hours after the transit of Venus on June 4, 1769 there was a total solar eclipse, which was visible in Northern America, Europe and Northern Asia as partial solar eclipse. This was the lowest time difference between a transit of a planet and a solar eclipse in the historical past.

More common, but still quite rare, is a conjunction of any planet (not confined exclusively to Mercury or Venus) at the time of a total solar eclipse, in which event the planet will be visible very near the eclipsed Sun, when without the eclipse it would have been lost in the Sun's glare. At one time, some scientists hypothesized that there may be a planet (often given the name Vulcan) even closer to the Sun than Mercury; the only way to confirm its existence would have been to observe it during a total solar eclipse. However, it is now known that no such planet exists, although there remains some possibility for small Vulcanoid asteroids to exist, although none have ever been found.

Solar eclipses by and from artificial satellites

The shadow of the moon as seen from the ISS in 2006.

Artificial satellites can also get in the line between the Earth and the Sun, but none is large enough to cause an eclipse. At the altitude of the International Space Station, for example, an object would need to be about 3.35 km across to blot the Sun out entirely. This means the best you can get is a satellite transit, but these events are difficult to watch, because the zone of visibility is very small. The satellite passes over the face of the Sun in about a second, typically. As with a transit of a planet, it will not get dark.

Artificial satellites do play an important role in documenting solar eclipses. Images of the umbra on the Earth's surface taken from Mir and the International Space Station are among the most spectacular eclipse images in history. Observations of eclipses from satellites orbiting above the Earth's atmosphere are of course not subject to weather conditions.

The direct observation of a total solar eclipse from space is rather rare. The only documented case is Gemini 12 in 1966. The partial phase of the 2006 total eclipse was visible from the International Space Station. At first, it looked as though an orbit correction in the middle of March would bring the ISS in the path of totality, but this correction was postponed.

See also

File:Mennekens05a.jpg
Series of photos taken during the Spanish 2005 annular eclipse.

Eclipses on other planets:

Eclipse lists:

Miscellaneous:

References

  1. Solar Eclipses, University of Tennessee
  2. Types of Solar Eclipse, P. Tiedt
  3. Solar Eclipses for Beginners, O. Staiger
  4. Central Solar Eclipses, F. Espenak
  5. Why Eclipses Happen, R. Hipschman, The Exploratorium
  6. What Causes an Eclipse?, Earth View
  7. F. Espenak, Fifty Year Canon of Solar Eclipses: 1986–2035 (NASA RP-1178, Greenbelt, MD, 1987)
  8. J. Meeus, C. Grosjean, W. and Vanderleen, Canon of Solar Eclipses (Pergamon Press, New York, 1966)
  9. Eclipse, MSN Encarta
  10. World Atlas of Solar Eclipse Paths, F. Espenak
  11. F.R. Stephenson, Historical Eclipses and Earth's Rotation (Cambridge University Press, 1997, p.54)
  12. Eclipses and the Saros, F. Espenak
  13. The Final Total Eclipse, A. Kendall
  14. Solar Eclipses of Historical Interest, F. Espenak
  15. F.R. Stephenson, Historical Eclipses and Earth's Rotation (Cambridge University Press, 1997)
  16. Eclipse Quotations, D. Le Conte
  17. Herodotus book VII, 37
  18. Hind and Chambers, 1889: 323
  19. Herodotus book IX, 10, book VIII, 131, and book IX, 1
  20. B. E. Schaefer, Solar Eclipses That Changed the World (Sky and Telescope, May 1994, p.36–39)
  21. C. J. Humphreys and W. G. Waddington, Dating the Crucifixion (Nature, Vol. 306, No. 5945, p.743–746, 22 December 1983)
  22. Eye Safety During Solar Eclipses, F. Espenak
  23. How to Watch a Partial Solar Eclipse Safely, A. M. MacRobert (Sky & Telescope magazine)
  24. Observing Eclipses Safely, O. Staiger
  25. The Experience of Totality, O. Staiger
  26. The science of eclipses, ESA
  27. Flying Shadows, D. Dravins (Lund Observatory)
  28. Relativity and the 1919 eclipse, ESA
  29. Musings About Twilight, D. Criner
  30. Simultaneous transits, J. Meeus and A. Vitagliano
  31. ISS-Venustransit (German)
  32. Looking Back on an Eclipsed Earth, Astronomy Picture of the Day.
  33. JSC Digital Image Collection

External links

Listen to this article
(3 parts, 27 minutes)
  1. Part 1
Spoken Misplaced Pages iconThese audio files were created from a revision of this article dated Error: no date provided, and do not reflect subsequent edits.(Audio help · More spoken articles)

General:

Eye safety:

Dedicated eclipse pages:

Poetry about the Solar Eclipse

Previous solar eclipse | (solar eclipse navigator) | Next solar eclipse

Categories: