Revision as of 14:03, 13 February 2013 editHighKing (talk | contribs)Extended confirmed users, New page reviewers, Pending changes reviewers27,836 edits Per WP:IMOS and sorted alphabetically← Previous edit | Revision as of 15:37, 15 February 2013 edit undoFactocop (talk | contribs)861 edits source uses UK and ROINext edit → | ||
Line 245: | Line 245: | ||
===Employment impact=== | ===Employment impact=== | ||
In a survey of 1144 organic farms in ] and |
In a survey of 1144 organic farms in the ] and ], researchers found that organic farms employed more workers than conventional ones. This difference persisted when factors such as the size of each farm (organic farms are typically larger) are taken into account. The researchers concluded that there would be 19% more farming jobs in the UK, and 6% more in Ireland, if 20% of all farms became organic.<ref>Morison, James, et al (2005). "Survey and analysis of labor on organic farms in the UK and Republic of Ireland", ''International Journal of Agricultural Sustainability''(3):24-43</ref> | ||
===Capacity building in developing countries=== | ===Capacity building in developing countries=== |
Revision as of 15:37, 15 February 2013
Organic farming is a form of agriculture that relies on techniques such as crop rotation, green manure, compost and biological pest control. Organic farming uses fertilizers and pesticides but excludes or strictly limits the use of manufactured (synthetic) fertilizers, pesticides (which include herbicides, insecticides and fungicides), plant growth regulators such as hormones, livestock antibiotics, food additives, genetically modified organisms, human sewage sludge, and nanomaterials.
Organic agricultural methods are internationally regulated and legally enforced by many nations, based in large part on the standards set by the International Federation of Organic Agriculture Movements (IFOAM), an international umbrella organization for organic farming organizations established in 1972. IFOAM defines the overarching goal of organic farming as:
"Organic agriculture is a production system that sustains the health of soils, ecosystems and people. It relies on ecological processes, biodiversity and cycles adapted to local conditions, rather than the use of inputs with adverse effects. Organic agriculture combines tradition, innovation and science to benefit the shared environment and promote fair relationships and a good quality of life for all involved..."
— International Federation of Organic Agriculture Movements
Since 1990, the market for organic products has grown from next to nothing statistically, reaching $55 billion in 2009 according to Organic Monitor (www.organicmonitor.com). This demand has driven a similar increase in organically managed farmland which has grown over the years 2001-2011 at a compounding rate of 8.9% per annum. As of 2011, approximately 37,000,000 hectares (91,000,000 acres) worldwide were farmed organically, representing approximately 0.9 percent of total world farmland (2009).
History
Main article: History of organic farmingOrganic farming (of many particular kinds) was the original type of agriculture, and has been practiced for thousands of years. Forest gardening, a fully organic food production system which dates from prehistoric times, is thought to be the world's oldest and most resilient agroecosystem. Artificial fertilizers had been created during the 18th century, initially with superphosphates and then ammonia-based fertilizers mass-produced using the Haber-Bosch process developed during World War I. These early fertilizers were cheap, powerful, and easy to transport in bulk. Similar advances occurred in chemical pesticides in the 1940s, leading to the decade being referred to as the 'pesticide era'.
The modern organic movement is a revival movement in the sense that it seeks to restore balance that was lost when technology grew rapidly in the 19th and 20th centuries. The organic movement began in the mid-1920s in Central Europe through the work of Rudolf Steiner, whose Lectures on Agriculture were published in 1925. who created biodynamic agriculture, an early version of organic agriculture. The system was based on Steiner's philosophy of anthroposophy rather than on a solid grasp of science. Organic agriculture was independently developed in the 1940s England through the work of Albert Howard who was inspired by his experiences with traditional farming methods in India. Howard is widely considered in the English-speaking world to be the "father of organic farming". Further work was done by J.I. Rodale in the United States, Lady Eve Balfour in the United Kingdom, and many others across the world.
Modern organic farming has made up only a fraction of total agricultural output from its beginning until today. Increasing environmental awareness in the general population has transformed the originally supply-driven movement to a demand-driven one. Premium prices and some government subsidies attracted farmers. In the developing world, many producers farm according to traditional methods which are comparable to organic farming but are not certified. In other cases, farmers in the developing world have converted for economic reasons.
Organic farming systems
There are several organic farming systems. Biodynamic farming is a comprehensive approach, with its own international governing body. The Do Nothing Farming method focuses on a minimum of mechanical cultivation and labor for grain crops. French intensive and biointensive, methods are well-suited to organic principles. Other techniques are permaculture and no-till farming.
While fundamentally different, large-scale agriculture and organic farming are not entirely mutually exclusive. For example, Integrated Pest Management is a multifaceted strategy that can include synthetic pesticides as a last resort—both organic and conventional farms use IPM systems for pest control.
Methods
"An organic farm, properly speaking, is not one that uses certain methods and substances and avoids others; it is a farm whose structure is formed in imitation of the structure of a natural system that has the integrity, the independence and the benign dependence of an organism"
— Wendell Berry, "The Gift of Good Land"
Organic farming methods combine scientific knowledge of ecology and modern technology with traditional farming practices based on naturally occurring biological processes. Organic farming methods are studied in the field of agroecology. While conventional agriculture uses synthetic pesticides and water-soluble synthetically purified fertilizers, organic farmers are restricted by regulations to using natural pesticides and fertilizers. The principal methods of organic farming include crop rotation, green manures and compost, biological pest control, and mechanical cultivation. These measures use the natural environment to enhance agricultural productivity: legumes are planted to fix nitrogen into the soil, natural insect predators are encouraged, crops are rotated to confuse pests and renew soil, and natural materials such as potassium bicarbonate and mulches are used to control disease and weeds. Hardier plants are generated through plant breeding rather than genetic engineering.
Crop diversity
Crop diversity is a distinctive characteristic of organic farming. Conventional farming focuses on mass production of one crop in one location, a practice called monoculture. The science of agroecology has revealed the benefits of polyculture (multiple crops in the same space), which is often employed in organic farming. Planting a variety of vegetable crops supports a wider range of beneficial insects, soil microorganisms, and other factors that add up to overall farm health.
Soil management
Organic farming relies heavily on the natural breakdown of organic matter, using techniques like green manure and composting, to replace nutrients taken from the soil by previous crops. This biological process, driven by microorganisms such as mycorrhiza, allows the natural production of nutrients in the soil throughout the growing season, and has been referred to as feeding the soil to feed the plant. Organic farming uses a variety of methods to improve soil fertility, including crop rotation, cover cropping, reduced tillage, and application of compost. By reducing tillage, soil is not inverted and exposed to air; less carbon is lost to the atmosphere resulting in more soil organic carbon. This has an added benefit of carbon sequestration which can reduce green house gases and aid in reversing climate change.
Plants need nitrogen, phosphorus, and potassium, as well as micronutrients and symbiotic relationships with fungi and other organisms to flourish, but getting enough nitrogen, and particularly synchronization so that plants get enough nitrogen at the right time (when plants need it most), is a challenge for organic farmers. Crop rotation and green manure ("cover crops") help to provide nitrogen through legumes (more precisely, the Fabaceae family) which fix nitrogen from the atmosphere through symbiosis with rhizobial bacteria. Intercropping, which is sometimes used for insect and disease control, can also increase soil nutrients, but the competition between the legume and the crop can be problematic and wider spacing between crop rows is required. Crop residues can be ploughed back into the soil, and different plants leave different amounts of nitrogen, potentially aiding synchronization. Organic farmers also use animal manure, certain processed fertilizers such as seed meal and various mineral powders such as rock phosphate and greensand, a naturally occurring form of potash which provides potassium. Together these methods help to control erosion. In some cases pH may need to be amended. Natural pH amendments include lime and sulfur, but in the U.S. some compounds such as iron sulfate, aluminum sulfate, magnesium sulfate, and soluble boron products are allowed in organic farming.
Mixed farms with both livestock and crops can operate as ley farms, whereby the land gathers fertility through growing nitrogen-fixing forage grasses such as white clover or alfalfa and grows cash crops or cereals when fertility is established. Farms without livestock ("stockless") may find it more difficult to maintain soil fertility, and may rely more on external inputs such as imported manure as well as grain legumes and green manures, although grain legumes may fix limited nitrogen because they are harvested. Horticultural farms growing fruits and vegetables which operate in protected conditions are often even more reliant upon external inputs.
Biological research on soil and soil organisms has proven beneficial to organic farming. Varieties of bacteria and fungi break down chemicals, plant matter and animal waste into productive soil nutrients. In turn, they produce benefits of healthier yields and more productive soil for future crops. Fields with less or no manure display significantly lower yields, due to decreased soil microbe community, providing a healthier, more arable soil system.
Weed management
Organic weed management promotes weed suppression, rather than weed elimination, by enhancing crop competition and phytotoxic effects on weeds. Organic farmers integrate cultural, biological, mechanical, physical and chemical tactics to manage weeds without synthetic herbicides.
Organic standards require rotation of annual crops, meaning that a single crop cannot be grown in the same location without a different, intervening crop. Organic crop rotations frequently include weed-suppressive cover crops and crops with dissimilar life cycles to discourage weeds associated with a particular crop. Research is ongoing to develop organic methods to promote the growth of natural microorganisms that suppress the growth or germination of common weeds.
Other cultural practices used to enhance crop competitiveness and reduce weed pressure include selection of competitive crop varieties, high-density planting, tight row spacing, and late planting into warm soil to encourage rapid crop germination.
Mechanical and physical weed control practices used on organic farms can be broadly grouped as:
- Tillage - Turning the soil between crops to incorporate crop residues and soil amendments; remove existing weed growth and prepare a seedbed for planting; turning soil soil after seeding to kill weeds;
- Mowing and cutting - Removing top growth of weeds;
- Flame weeding and thermal weeding - Using heat to kill weeds; and
- Mulching - Blocking weed emergence with organic materials, plastic films, or landscape fabric.
Some critics, citing work published in 1997 by David Pimentel of Cornell University, which described an epidemic of topsoil erosion worldwide, have raised concerned that tillage contribute to the erosion epidemic. The FAO and other organizations have advocated a "no-till" approach to both conventional and organic farming, and point out in particular that crop rotation techniques used in organic farming are excellent no-till approaches. A study published in 2005 by Pimentel and colleagues confirmed that "Crop rotations and cover cropping (green manure) typical of organic agriculture reduce soil erosion, pest problems, and pesticide use." Some naturally sourced chemicals are allowed for herbicidal use. These include certain formulations of acetic acid (concentrated vinegar), corn gluten meal, and essential oils. A few selective bioherbicides based on fungal pathogens have also been developed. At this time, however, organic herbicides and bioherbicides play a minor role in the organic weed control toolbox.
Weeds can be controlled by grazing. For example, geese have been used successfully to weed a range of organic crops including cotton, strawberries, tobacco, and corn, reviving the practice of keeping cotton patch geese, common in the southern U.S. before the 1950s. Similarly, some rice farmers introduce ducks and fish to wet paddy fields to eat both weeds and insects.
Controlling other organisms
See also: Biological pest control and Integrated Pest ManagementOrganisms aside from weeds that cause problems on organic farms include arthropods (e.g., insects, mites), nematodes, fungi and bacteria. Organic practices include, but are not limited to:
- encouraging predatory beneficial insects to control pests by serving them nursery plants and/or an alternative habitat, usually in a form of a shelterbelt, hedgerow, or beetle bank;
- encouraging beneficial microorganisms;
- rotating crops to different locations from year to year to interrupt pest reproduction cycles;
- planting companion crops and pest regulating plants that discourage or divert pests;
- using row covers to protect crops during pest migration periods;
- using biologic pesticides and herbicides
- using no-till farming, and no-till farming techniques as false seedbeds
- using sanitation to remove pest habitat;
- Using insect traps to monitor and control insect populations.
- Using physical barriers, such as row covers
Examples of predatory beneficial insects include minute pirate bugs, big-eyed bugs, and to a lesser extent ladybugs (which tend to fly away), all of which eat a wide range of pests. Lacewings are also effective, but tend to fly away. Praying mantis tend to move more slowly and eat less heavily. Parasitoid wasps tend to be effective for their selected prey, but like all small insects can be less effective outdoors because the wind controls their movement. Predatory mites are effective for controlling other mites.
Naturally derived insecticides allowed for use on organic farms use include Bacillus thuringiensis (a bacterial toxin), pyrethrum (a chrysanthemum extract), spinosad (a bacterial metabolite), neem (a tree extract) and rotenone (a legume root extract). Fewer than 10% of organic farmers use these pesticides regularly; one survey found that only 5.3% of vegetable growers in California use rotenone while 1.7% use pyrethrum. These pesticides are not always more safe or environmentally friendly than synthetic pesticides and can cause harm. The main criterion for organic pesticides is that they are naturally derived, and some naturally derived substances have been controversial. Controversial natural pesticides include rotenone, copper, nicotine sulfate, and pyrethrums Rotenone and pyrethrum are particularly controversial because they work by attacking the nervous system, like most conventional insecticides. Rotenone is extremely toxic to fish and can induce symptoms resembling Parkinson's disease in mammals. Although pyrethrum (natural pyrethrins) is more effective against insects when used with piperonyl butoxide (which retards degradation of the pyrethrins), organic standards generally do not permit use of the latter substance.
Naturally derived fungicides allowed for use on organic farms include the bacteria Bacillus subtilis and Bacillus pumilus; and the fungus Trichoderma harzianum. These are mainly effective for diseases affecting roots. Compost tea contains a mix of beneficial microbes, which may attack or out-compete certain plant pathogens, but variability among formulations and preparation methods may contribute to inconsistent results or even dangerous growth of toxic microbes in compost teas.
Some naturally derived pesticides are not allowed for use on organic farms. These include nicotine sulfate, arsenic, and strychnine.
Synthetic pesticides allowed for use on organic farms include insecticidal soaps and horticultural oils for insect management; and Bordeaux mixture, copper hydroxide and sodium bicarbonate for managing fungi. Copper sulfate and Bordeaux mixture (copper sulfate plus lime), approved for organic use in various jurisdictions, can be more environmentally problematic than some synthetic fungicides dissallowed in organic farming Similar concerns apply to copper hydroxide. Repeated application of copper sulfate or copper hydroxide as a fungicide may eventually result in copper accumulation to toxic levels in soil, and admonitions to avoid excessive accumulations of copper in soil appear in various organic standards and elsewhere. Environmental concerns for several kinds of biota arise at average rates of use of such substances for some crops. In the European Union, where replacement of copper-based fungicides in organic agriculture is a policy priority, research is seeking alternatives for organic production.
Livestock
Raising livestock and poultry, for meat, dairy and eggs, is another traditional, farming activity that complements growing. Organic farms attempt to provide animals with "natural" living conditions and feed. While the USDA does not require any animal welfare requirements be met for a product to be marked as organic, this is a variance from older organic farming practices. Ample, free-ranging outdoor access, for grazing and exercise, is a distinctive feature, and crowding is avoided. A Feed is also organically grown, and drugs, including antibiotics, are not ordinarily used (and are prohibited under organic regulatory regimes). Animal health and food quality are thus pursued in a holistic "fresh air, exercise, and good food" approach.
Also, horses and cattle used to be a basic farm feature that provided labor, for hauling and plowing, fertility, through recycling of manure, and fuel, in the form of food for farmers and other animals. While today, small growing operations often do not include livestock, domesticated animals are a desirable part of the organic farming equation, especially for true sustainability, the ability of a farm to function as a self-renewing unit.
Genetic modification
Main articles: Genetically modified crops, Genetically modified food, and Genetically modified food controversiesA key characteristic of organic farming is the rejection of genetically engineered plants and animals. On October 19, 1998, participants at IFOAM's 12th Scientific Conference issued the Mar del Plata Declaration, where more than 600 delegates from over 60 countries voted unanimously to exclude the use of genetically modified organisms in food production and agriculture.
Although opposition to the use of any transgenic technologies in organic farming is strong, agricultural researchers Luis Herrera-Estrella and Ariel Alvarez-Morales continue to advocate integration of transgenic technologies into organic farming as the optimal means to sustainable agriculture, particularly in the developing world, as does author and scientist Pamela Ronald, who views this kind of biotechnology as being consistent with organic principles.
Although GMOs are excluded from organic farming, there is concern that the pollen from genetically modified crops is increasingly penetrating organic and heirloom seed stocks, making it difficult, if not impossible, to keep these genomes from entering the organic food supply. Differing regulations among countries limits the availability of GMOs to certain countries, as described in the article on regulation of the release of genetic modified organisms.
The hazards that genetic modification could pose to the environment are hotly contested. See genetically modified food controversies article.
Standards
Main article: Organic certificationStandards regulate production methods and in some cases final output for organic agriculture. Standards may be voluntary or legislated. As early as the 1970s private associations certified organic producers. In the 1980s, governments began to produce organic production guidelines. In the 1990s, a trend toward legislated standards began, most notably with the 1991 EU-Eco-regulation developed for European Union, which set standards for 12 countries, and a 1993 UK program. The EU's program was followed by a Japanese program in 2001, and in 2002 the U.S. created the National Organic Program (NOP). As of 2007 over 60 countries regulate organic farming (IFOAM 2007:11). In 2005 IFOAM created the Principles of Organic Agriculture, an international guideline for certification criteria. Typically the agencies accredit certification groups rather than individual farms.
Organic production materials used in and foods are tested independently by the Organic Materials Review Institute.
Composting
Under USDA organic standards, manure must be subjected to proper thermophilic composting and allowed to reach a sterilizing temperature. If raw animal manure is used, 120 days must pass before the crop is harvested if the final product comes into direct contact with the soil. For products which do not come into direct contact with soil, 90 days must pass prior to harvest.
Economics
The economics of organic farming, a subfield of agricultural economics, encompasses the entire process and effects of organic farming in terms of human society, including social costs, opportunity costs, unintended consequences, information asymmetries, and economies of scale. Although the scope of economics is broad, agricultural economics tends to focus on maximizing yields and efficiency at the farm level. Economics takes an anthropocentric approach to the value of the natural world: biodiversity, for example, is considered beneficial only to the extent that it is valued by people and increases profits. Some entities such as the European Union subsidize organic farming, in large part because these countries want to account for the externalities of reduced water use, reduced water contamination, reduced soil erosion, reduced carbon emissions, increased biodiversity, and assorted other benefits that result from organic farming.
Traditional organic farming is labor and knowledge-intensive whereas conventional farming is capital-intensive, requiring more energy and manufactured inputs.
Organic farmers in California have cited marketing as their greatest obstacle.
Geographic producer distribution
The markets for organic products are strongest in North America and Europe, which as of 2001 are estimated to have $6 and $8 billion respectively of the $20 billion global market. As of 2007 Australasia has 39% of the total organic farmland, including Australia's 1,180,000 hectares (2,900,000 acres) but 97 percent of this land is sprawling rangeland (2007:35). US sales are 20x as much. Europe farms 23 percent of global organic farmland (6.9 million hectares), followed by Latin America with 19 percent (5.8 million hectares). Asia has 9.5 percent while North America has 7.2 percent. Africa has 3 percent.
Besides Australia, the countries with the most organic farmland are Argentina (3.1 million hectares), China (2.3 million hectares), and the United States (1.6 million hectares). Much of Argentina's organic farmland is pasture, like that of Australia (2007:42). Spain, Germany, Brazil (the world's largest agricultural exporter), Uruguay, and the UK follow the United States in the amount of organic land (2007:26).
In the European Union (EU25) 3.9% of the total utilized agricultural area was used for organic production in 2005. The countries with the highest proportion of organic land were Austria (11%) and Italy (8.4), followed by the Czech Republic and Greece (both 7.2%). The lowest figures were shown for Malta (0.1%), Poland (0.6%) and Ireland (0.8%). In 2009, the proportion of organic land in the EU grew to 4.7%. The countries with highest share of agricultural land were Liechtenstein (26.9%), Austria (18.5%) and Sweden (12.6%). 16% of all farmers in Austria produced organically in 2010. By the same year the proportion of organic land increased to 20%.: In 2005 168,000 ha of land in Poland was under organic management. In 2010 100,000 ha of land were under organic management in Romania, representing 1% of the total utilized agricultural area. 70%-80% of the local organic production, amounting to 100 million Euros in 2010, is exported. The organic products market grew to 50 million Euros in 2010.
After the collapse of the Soviet Union in 1991, agricultural inputs that had previously been purchased from Eastern bloc countries were no longer available in Cuba, and many Cuban farms converted to organic methods out of necessity. Consequently, organic agriculture is a mainstream practice in Cuba, while it remains an alternative practice in most other countries. Although some products called organic in Cuba would not satisfy certification requirements in other countries (crops may be genetically modified, for example), Cuba exports organic citrus and citrus juices to EU markets that meet EU organic standards. Cuba's forced conversion to organic methods may position the country to be a global supplier of organic products.
Growth
As of 2001, the estimated market value of certified organic products was estimated to be $20 billion. By 2002 this was $23 billion and by 2007 more than $46 billion.
In recent years both Europe (2007: 7.8 million hectares, European Union: 7.2 million hectares) and North America (2007: 2.2 million hectares) have experienced strong growth in organic farmland. In the EU it grew by 21% in the period 2005 to 2008. However, this growth has occurred under different conditions. While the European Union has shifted agricultural subsidies to organic farmers due to perceived environmental benefits, the United States has not, continuing to subsidize some but not all traditional commercial crops, such as corn and sugar. As a result of this policy difference, as of 2008 4.1% percent of European Union farmland was organically managed compared to the 0.6 percent in the U.S.
IFOAM's most recent edition of The World of Organic Agriculture: Statistics and Emerging Trends 2009 lists the countries which had the most hectares in 2007. The country with the most organic land is Australia with more than 12 million hectares, followed by Argentina, Brazil and the US. In total 32.2 million hectares were under organic management in 2007. For 1999 11 million hectares of organically managed land are reported.
As organic farming becomes a major commercial force in agriculture, it is likely to gain increasing impact on national agricultural policies and confront some of the scaling challenges faced by conventional agriculture.
Productivity and profitability
Studies comparing yields have had mixed results.
A study published in 1990 made "two hundred and five comparisons ... of yields from organic and conventional farming systems..... Data from 26 crops and two animal products, in the form of the ratio of organic to conventional yields, were normally distributed with a mean of 0.91, a standard deviation of 0.24 and a modal value between 0.8 and 0.9. More than one-half of the comparisons of milk production and bean yields had ratios greater than 1.0, i.e. higher yields from organic than conventional systems. There was no evidence to show that the organic systems had any effect on year-to-year variability in yield, either climate-induced or caused by any transitional or conversion effects." The study also discussed procedural difficulties in comparing the productivity of organic with other farming systems. or 95-100%,
A US survey published in 2001 analyzed 150 growing seasons of data on grain and soybean crops and concluded that organic yields were 95-100% of conventional yields.
A study spanning two decades was published in 2002 and found a 20% smaller yield from organic farms using 50% less fertilizer, 97% less pesticide, and energy input was 34% to 53% lower.
A 2003 study found that during drought years, organic farms can have yields 20-40% higher than conventional farms.
A study published in 2005 compared conventional cropping, organic animal-based cropping, and organic legume-based cropping on a test farm at the Rodale Institute over 22 years. The study found that "the crop yields for corn and soybeans were similar in the organic animal, organic legume, and conventional farming systems". It also found that "significantly less fossil energy was expended to produce corn in the Rodale Institute’s organic animal and organic legume systems than in the conventional production system. There was little difference in energy input between the different treatments for producing soybeans. In the organic systems, synthetic fertilizers and pesticides were generally not used". As of 2013 the Rodale study was ongoing and a thirty year anniversary report was published by Rodale in 2012.
A 2007 study compiling research from 293 different comparisons into a single study to assess the overall efficiency of the two agricultural systems has concluded that "organic methods could produce enough food on a global per capita basis to sustain the current human population, and potentially an even larger population, without increasing the agricultural land base." The researchers also found that while in developed countries, organic systems on average produce 92% of the yield produced by conventional agriculture, organic systems produce 80% more than conventional farms in developing countries, because the materials needed for organic farming are more accessible than synthetic farming materials to farmers in some poor countries. This study was strongly contested by another study published in 2008 which stated, and was entitled, "Organic agriculture cannot feed the world" and said that the 2007 came up with "a major overestimation of the productivity of OA" "because data are misinterpreted and calculations accordingly are erroneous."
Another study published in 1999 from the Danish Environmental Protection Agency found that, area-for-area, organic farms of potatoes, sugar beet and seed grass produce as little as half the output of conventional farming. Michael Pollan, author of The Omnivore's Dilemma, responds to this by pointing out that the average yield of world agriculture is substantially lower than modern sustainable farming yields. Bringing average world yields up to modern organic levels could increase the world's food supply by 50%.
Supporters claim that organically managed soil has a higher quality and higher water retention. This may help increase yields for organic farms in drought years. Organic farming can build up soil organic matter better than conventional no-till farming, which suggests long-term yield benefits from organic farming. An 18-year study of organic methods on nutrient-depleted soil, concluded that conventional methods were superior for soil fertility and yield for nutrient-depleted soils in cold-temperate climates, arguing that much of the benefits from organic farming are derived from imported materials which could not be regarded as "self-sustaining".
Organic farms withstand severe weather conditions better than conventional farms, sometimes yielding 70-90% more than conventional farms during droughts. Organic farms are more profitable in the drier states of the United States, likely due to their superior drought performance. Organic farms survive hurricane damage much better, retaining 20 to 40% more topsoil and smaller economic losses at highly significant levels than their neighbors.
However, critics of organic farming methods believe that the increased land needed to farm organic food could potentially destroy the rainforests and wipe out many ecosystems.
Profitability
The decreased cost of synthetic fertilizer and pesticide inputs, along with the higher prices that consumers pay for organic produce, contribute to increased profits. Organic farms have been consistently found to be as or more profitable than conventional farms. Without the price premium, profitability is mixed. Organic production was more profitable in Wisconsin, given price premiums.
For markets and supermarkets organic food is profitable as well, and is generally even sold at significantly higher rates than non-organic food
However, when the buyer compares prices and buys consciously, organic food is not always more expensive for the buyer than non-organic food. For example, in 2000, Phillipe Renard made his restaurant to switch to use 85% organic food, without increasing the cost for the clients. In the documentary "Architects for Change", he also stated that since 2000, the cost of organic products has come down even more, and at present, it is no longer a problem to attain organic products at a price comparative to products of non-organic agriculture.
Energy efficiency
A study of the sustainability of apple production systems showed that in comparing a conventional farming system to an organic method of farming, the organic system in this case is more energy efficient. A more comprehensive study compared efficiency of agriculture for products such as grain, roughage crops, and animal husbandry. While the study did not investigate specific additional requirements of arable land or numbers of farm laborers to produce total yields for organic farming vs. conventional farming, leaving open the question of overall capacity of organic farming to meet current and future agricultural needs, it concluded that organic farming had a higher yield per unit of energy over multiple crops and for livestock. However, conventional farming had higher total yield. Conversely, another study noted that organic wheat and corn production was more energy efficient than conventional methods while organic apple and potato production was less energy efficient than conventional methods.
A study done with apple orchards in the state of Washington found that organic orchards found to be at least 7% more energy efficient.
Sales and marketing
Most sales are concentrated in developed nations. These products are what economists call credence goods in that they rely on uncertain certification. Interest in organic products dropped between 2006 and 2008, and 42% of Americans polled don't trust organic produce. 69% of Americans claim to occasionally buy organic products, down from 73% in 2005. One theory was that consumers were substituting "local" produce for "organic" produce.
Distributors
In the United States, 75% of organic farms are smaller than 2.5 hectares. In California 2% of the farms account for over half of sales. Small farms join together in cooperatives such as Organic Valley, Inc. to market their goods more effectively.
Most small cooperative distributors have merged or were acquired by large multinationals such as General Mills, Heinz, ConAgra, Kellogg, and others. In 1982 there were 28 consumer cooperative distributors, but as of 2007 only 3 remained. This consolidation has raised concerns among consumers and journalists of potential fraud and degradation in standards. Most sell their organic products through subsidiaries, under other labels.
Organic foods also can be a niche in developing nations. It would provide more money and a better opportunity to compete internationally with the huge distributors. Organic prices are much more stable than conventional foods, and the small farms can still compete and have similar prices with the much larger farms that usually take all of the profits.
Farmers markets
Price premiums are important for the profitability of small organic farmers. Farmers selling directly to consumers at farmers' markets have continued to achieve these higher returns. In the United States the number of farmers' markets tripled from 1,755 in 1994 to 5,274 in 2009.
Employment impact
In a survey of 1144 organic farms in the United Kingdom and Republic of Ireland, researchers found that organic farms employed more workers than conventional ones. This difference persisted when factors such as the size of each farm (organic farms are typically larger) are taken into account. The researchers concluded that there would be 19% more farming jobs in the UK, and 6% more in Ireland, if 20% of all farms became organic.
Capacity building in developing countries
Organic agriculture can contribute to ecologically sustainable, socio-economic development, especially in poorer countries. The application of organic principles enables employment of local resources (e.g., local seed varieties, manure, etc.) and therefore cost-effectiveness. Local and international markets for organic products show tremendous growth prospects and offer creative producers and exporters excellent opportunities to improve their income and living conditions.
Organic agriculture is knowledge intensive. Globally, capacity building efforts are underway, including localized training material, to limited effect. As of 2007, the International Federation of Organic Agriculture Movements hosted more than 170 free manuals and 75 training opportunities online.
In 2008 the United Nations Environmental Programme (UNEP) and the United Nations Conference on Trade and Development (UNCTAD) stated that "organic agriculture can be more conducive to food security in Africa than most conventional production systems, and that it is more likely to be sustainable in the long-term" and that "yields had more than doubled where organic, or near-organic practices had been used" and that soil fertility and drought resistance improved.
Externalities
Agriculture imposes negative externalities (uncompensated costs) upon society through land and other resource use, biodiversity loss, erosion, pesticides, nutrient runoff, water usage, subsidy payments and assorted other problems. Positive externalities include self-reliance, entrepreneurship, respect for nature, and air quality. Organic methods reduce some of these costs. In 2000 uncompensated costs for 1996 reached 2,343 million British pounds or 208 pounds per hectare. A study of practices in the USA published in 2005 concluded that cropland costs the economy approximately 5 to 16 billion dollars ($30 to $96 per hectare), while livestock production costs 714 million dollars. Both studies recommended reducing externalities. The 2000 review included reported pesticide poisonings but did not include speculative chronic health effects of pesticides, and the 2004 review relied on a 1992 estimate of the total impact of pesticides.
It has been proposed that organic agriculture can reduce the level of some negative externalities from (conventional) agriculture. Whether the benefits are private or public depends upon the division of property rights.
Several surveys and studies have attempted to examine and compare conventional and organic systems of farming and have found that organic techniques, while not without harm, are less damaging than conventional ones because they reduce levels of biodiversity less than conventional systems do and use less energy and produce less waste when calculated per unit area.
A 2003 investigation by the Department for Environment Food and Rural Affairs in the UK found, similar to other reports, that organic farming "can produce positive environmental benefits", but that some of the benefits were decreased or lost when comparisons are made on "the basis of unit production rather than area".
The situation was shown dramatically in a comparison of a modern dairy farm in Wisconsin with one in New Zealand in which the animals grazed extensively. Using total farm emissions per kg milk produced as a parameter, the researchers showed that production of methane from belching was higher in the New Zealand farm, while carbon dioxide production was higher in the Wisconsin farm. Output of nitrous oxide, a gas with an estimated global warming potential 310 times that of carbon dioxide was also higher in the New Zealand farm. Methane from manure handling was similar in the two types of farm. The explanation for the finding relates to the different diets used on these farms, being based more completely on forage (and hence more fibrous) in New Zealand and containing less concentrate than in Wisconsin. Fibrous diets promote a higher proportion of acetate in the gut of ruminant animals, resulting in a higher production of methane that has to be released by belching. When cattle are given a diet containing some concentrates (such as corn and soybean meal) in addition to grass and silage, the pattern of ruminal fermentation alters from acetate to mainly propionate. As a result methane production is reduced. Capper et al. compared the environmental impact of US dairy production in 1944 and 2007. They calculated that the carbon “footprint” per billion kg of milk produced in 2007 was 37 percent that of equivalent milk production in 1944.
Pesticides
Unlike conventional farms, most organic farms largely avoid synthetic pesticides Some pesticides damage the environment or with direct exposure, human health. Children may be more at risk than adults from direct exposure, as the toxicity of pesticides is frequently different in children and adults.
The five main pesticides used in organic farming are Bt (a bacterial toxin), pyrethrum, rotenone, copper and sulphur. "Fewer than 10% of organic farmers use botanical insecticides on a regular basis, 12% use sulfur, and 7% use copper-based compounds." Reduction and elimination of chemical pesticide use is technically challenging. Organic pesticides often complement other pest control strategies.
Ecological concerns primarily focus around pesticide use, as 16% of the world's pesticides are used in the production of cotton.
Runoff is one of the most damaging effects of pesticide use. The USDA Natural Resources Conservation Service tracks the environmental effects of water contamination and concluded, "the Nation's pesticide policies during the last twenty six years have succeeded in reducing overall environmental risk, in spite of slight increases in area planted and weight of pesticides applied. Nevertheless, there are still areas of the country where there is no evidence of progress, and areas where risk levels for protection of drinking water, fish, algae and crustaceans remain high".
Food quality and safety
Main article: Organic foodThe weight of the available scientific evidence has not shown a consistent and significant difference between organic and more conventionally grown food in terms of safety, or nutritional value. In 2009 a review of all the relevant research comparing organic to conventionally grown foods was carried out by the United Kingdom's Food Standards Agency which concluded:
No evidence of a difference in content of nutrients and other substances between organically and conventionally produced crops and livestock products was detected for the majority of nutrients assessed in this review suggesting that organically and conventionally produced crops and livestock products are broadly comparable in their nutrient content... There is no good evidence that increased dietary intake, of the nutrients identified in this review to be present in larger amounts in organically than in conventionally produced crops and livestock products, would be of benefit to individuals consuming a normal varied diet, and it is therefore unlikely that these differences in nutrient content are relevant to consumer health.
A 2009 review of potential health effects conducted for the UK Food Standards Agency analysed eleven articles, concluding, "because of the limited and highly variable data available, and concerns over the reliability of some reported findings, there is currently no evidence of a health benefit from consuming organic compared to conventionally produced foodstuffs. It should be noted that this conclusion relates to the evidence base currently available on the nutrient content of foodstuffs, which contains limitations in the design and in the comparability of studies."
Individual studies have considered a variety of possible impacts, including pesticide residues. Pesticide residues present a second channel for health effects. Comments include, "Organic fruits and vegetables can be expected to contain fewer agrochemical residues than conventionally grown alternatives; yet, "the significance of this difference is questionable".
Nitrate concentrations may be less, but the health impact of nitrates is debated. Lack of data has limited research on the health effects of natural plant pesticides and bacterial pathogens.
The higher cost of organic food (ranging from 45 to 200%) could inhibit consumption of the recommended 5 servings per day of vegetables and fruits, which improve health and reduce cancer regardless of their source.
Soil conservation
Main article: Soil conservationIn Dirt: The Erosion of Civilizations, geomorphologist David Montgomery outlines a coming crisis from soil erosion. Agriculture relies on roughly one meter of topsoil, and that is being depleted ten times faster than it is being replaced. No-till farming, which some claim depends upon pesticides, is one way to minimize erosion. However, a recent study by the USDA's Agricultural Research Service has found that manure applications in tilled organic farming are better at building up the soil than no-till.
Climate change
Organic agriculture emphasizes closed nutrient cycles, biodiversity, and effective soil management providing the capacity to mitigate and even reverse the effects of climate change. Organic agriculture can decrease fossil fuel emissions and, like any well managed agricultural system, sequesters carbon in the soil. The elimination of synthetic nitrogen in organic systems decreases fossil fuel consumption by 33 percent and carbon sequestration takes CO
2 out of the atmosphere by putting it in the soil in the form of organic matter which is often lost in conventionally managed soils. Carbon sequestration occurs at especially high levels in organic no-till managed soil.
Agriculture has been undervalued and underestimated as a means to combat global climate change. Soil carbon data show that regenerative organic agricultural practices are among the most effective strategies for mitigating CO
2emissions.
Nutrient leaching
Excess nutrients in lakes, rivers, and groundwater can cause algal blooms, eutrophication, and subsequent dead zones. In addition, nitrates are harmful to aquatic organisms by themselves. The main contributor to this pollution is nitrate fertilizers whose use is expected to "double or almost triple by 2050". Organically fertilizing fields "significantly harmful nitrate leaching" over conventionally fertilized fields: "annual nitrate leaching was 4.4-5.6 times higher in conventional plots than organic plots".
The large dead zone in the Gulf of Mexico is caused in large part by agricultural runoff: a combination of fertilizer and livestock manure. Over half of the nitrogen released into the Gulf comes from agriculture. This increases costs for fishermen, as they must travel far from the coast to find fish.
Nitrogen leaching into the Danube River was substantially lower among organic farms. The resulting externalities could be neutralized by charging 1 euro per kg of released nitrogen.
Agricultural runoff and algae blooms are strongly linked in California.
Biodiversity
Main article: Organic farming and biodiversityA wide range of organisms benefit from organic farming, but it is unclear whether organic methods confer greater benefits than conventional integrated agri-environmental programs. Nearly all non-crop, naturally occurring species observed in comparative farm land practice studies show a preference for organic farming both by abundance and diversity. An average of 30% more species inhabit organic farms. Birds, butterflies, soil microbes, beetles, earthworms, spiders, vegetation, and mammals are particularly affected. Lack of herbicides and pesticides improve biodiversity fitness and population density. Many weed species attract beneficial insects that improve soil qualities and forage on weed pests. Soil-bound organisms often benefit because of increased bacteria populations due to natural fertilizer such as manure, while experiencing reduced intake of herbicides and pesticides. Increased biodiversity, especially from beneficial soil microbes and mycorrhizae have been proposed as an explanation for the high yields experienced by some organic plots, especially in light of the differences seen in a 21-year comparison of organic and control fields.
Biodiversity from organic farming provides capital to humans. Species found in organic farms enhance sustainability by reducing human input (e.g., fertilizers, pesticides).
Critical analysis
Norman Borlaug (father of the "Green Revolution" and a Nobel Peace Prize laureate), Prof A. Trewavas and other critics contested the notion that organic agricultural systems are more friendly to the environment and more sustainable than conventional farming systems. Borlaug asserts that organic farming practices can at most feed 4 billion people, after expanding cropland dramatically and destroying ecosystems in the process. Borlaug and his co-authors advocated using organic matter in addition to inorganic fertilizers in soil fertility management, but opposed advocating only organic agriculture for the developing world. The Danish Environmental Protection Agency estimated that phasing out all pesticides would result in an overall yield reduction of about 25%. Environmental and health effects were assumed but hard to assess.
One study claims that organic agriculture could feed the entire global population, somewhat more than 6 billion people. It states that organic farms have lower yields than their conventional counterparts in developed countries (92%) but higher than their low-intensity counterparts in developing countries (180%), attributing this to lower adoption of fertilizers and pesticides in the developing world compared to the intensive farming of the developed world. However, concerns have been expressed about that study's selection, characterization and interpretation of data, and its assumptions and analytical methods, casting doubt on several of its conclusions.
The Centers for Disease Control repudiated a claim by Dennis Avery of the Hudson Institute, that the risk of E. coli infection was eight times higher when eating organic food. (Avery had cited CDC as a source.) Avery had included problems stemming from non-organic unpasteurized juice in his calculations. Epidemiologists traced the 2011 E. coli O104:H4 outbreak - which caused over 3,900 cases and 52 deaths - to an organic farm in Bienenbüttel in Germany.
Urs Niggli, director of the FiBL Institute, contends that a global campaign against organic farming derives mostly from Alex Avery's book The truth about organic farming.
See also
- Advance Sowing
- Agroecology
- Biodynamic agriculture
- Biological pest control
- Certified Naturally Grown
- Companion plants and List of companion plants and List of repellent plants and List of beneficial weeds
- Crop rotation
- Ecological pesticides
- List of organic gardening and farming topics
- Organic clothing
- Organic farming by country
- Organic Farming Digest
- Organic food
- Organic movement
- Seasonal food
- Wildculture
References
- Directorate General for Agriculture and Rural Development of the European Commission What is organic farming
- Paull, John (2011) "Nanomaterials in food and agriculture: The big issue of small matter for organic food and farming", Proceedings of the Third Scientific Conference of ISOFAR (International Society of Organic Agriculture Research), 28 September - 1 October, Namyangju, Korea., 2:96-99.
- Paull, John "From France to the World: The International Federation of Organic Agriculture Movements (IFOAM)", Journal of Social Research & Policy, 2010, 1(2):93-102.
- "Definition of Organic Agriculture". IFOAM. Retrieved 2008-09-30.
- Paull, John (2011) "The Uptake of Organic Agriculture: A Decade of Worldwide Development", Journal of Social and Development Sciences, 2 (3), pp. 111-120.
- ^ Willer, Helga; Kilcher, Lukas (2011). the organic world homepage "The World of Organic Agriculture. Statistics and Emerging Trends". Bonn; FiBL, Frick: IFOAM.
{{cite news}}
: Check|url=
value (help) - Douglas John McConnell (2003). The Forest Farms of Kandy: And Other Gardens of Complete Design. p. 1.
- Horne, Paul Anthony (2008). Integrated pest management for crops and pastures. CSIRO Publishing. p. 2. ISBN 978-0-643-09257-0.
- ^ Paull, John (2006) The Farm as Organism: The Foundational Idea of Organic Agriculture Elementals ~ Journal of Bio-Dynamics Tasmania 83:14–18
- Paull, John (2011). "Attending the First Organic Agriculture Course: Rudolf Steiner's Agriculture Course at Koberwitz, 1924". European Journal of Social Sciences. 21 (1): 64–70.
- ^ Holger Kirchmann and Lars Bergström, editors. Organic Crop Production – Ambitions and Limitations Springer. Berlin 2008.
- Paull John (2011). "Attending the First Organic Agriculture Course: Rudolf Steiner's Agriculture Course at Koberwitz, 1924" (PDF). European Journal of Social Sciences. 21 (1): 64–70.
- Lotter, D.W. (2003) Organic agriculture. Journal of Sustainable Agriculture 21(4)
- Biodynamics is listed as a "modern organic agriculture" system in: Minou Yussefi and Helga Willer (Eds.), The World of Organic Agriculture: Statistics and Future Prospects, 2003, p. 57
- Biodynamic agriculture is "a type of organic system". Charles Francis and J. van Wart (2009), "History of Organic Farming and Certification", in Organic farming: the ecological system. American Society of Agronomy. pp. 3-18
- Stinner, D.H (2007), "The Science of Organic Farming", in William Lockeretz (ed.), Organic Farming: An International History, Oxfordshire, UK & Cambridge, Massachusetts: CAB International (CABI), pp. 40–72, ISBN 978-0-85199-833-6, retrieved 10 August 2010 ebook ISBN 978-1-84593-289-3
- Paull, John "China's Organic Revolution", Journal of Organic Systems (2007) 2 (1): 1-11.
- "Integrated Pest Management". U.S. Environmental Protection Agency. Retrieved 1 January 2013.
{{cite web}}
: Cite has empty unknown parameter:|coauthors=
(help) - FiBL (2006) Use of potassium bicarbonate as a fungicide in organic farming
- Fargione J, and D Tilman. 2002. "Competition and coexistence in terrestrial plants". Pages 156-206 In U. Sommer and B Worm editors, Competition and Coexistence. Springer-Verlag, Berlin, Germany.
- Linker, H.M. "Insect Management On Organic Farms" (PDF). Center for Environmental Farming Systems. Retrieved 1 January 2013.
{{cite web}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Watson CA, Atkinson D, Gosling P, Jackson LR, Rayns FW. (2002). "Managing soil fertility in organic farming systems". Soil Use and Management. 18: 239–247. doi:10.1111/j.1475-2743.2002.tb00265.x. Retrieved 2009-05-29.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) Preprint with free full-text. - ^ Gillman J. (2008). The Truth About Organic Farming.
- Ingram, M. (2007). "Biology and Beyond: The Science of Back to Nature Farming in the United States". Annals of the Association of American Geographers. 97 (2): 298–312. doi:10.1111/j.1467-8306.2007.00537.x.
- ^ Fließbach, A.; Oberholzer, H.; Gunst, L.; Mäder, P. (2006). "Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming". Agriculture, Ecosystems and Environment. 118: 273–284.
- ^ Kathleen Delate and Robert Hartzler. 2003. Weed Management for Organic Farmers. Iowa State University Extension Bulletin 1883.
- Staff, United Nations Conference on Trade and Development. Organic Standards
- Robert J. Kremer and Jianmei Li. 2003. Developing weed-suppressive soils through improved soil quality management. Soil & Tillage Research 72: 193-202.
- ^ Mark Schonbeck, Virginia Association for Biological Farming. Last Updated: March 23, 2010. An Organic Weed Control Toolbox.
- Szykitka, Walter (2004). The Big Book of Self-Reliant Living: Advice and Information on Just About Everything You Need to Know to Live on Planet Earth. Globe-Pequot. p. 343. ISBN 978-1-59228-043-8.
- Pimentel D et al. (1997) Environmental and Economic Costs of Soil Erosion and Economic Benefits of Conservation Science 267(52010):1117-1123
- ^ Staff, Green.View (2008-08-11). "Stuck in the mud". The Economist.
- David R. Huggins and John P. Reganold. (2008) No-till: The Quiet Revolution Scientific American July 2008 Issue:70-77
- Pimentel D et al. (2005) Environmental, Energetic, and Economic Comparisons of Organic and Conventional Farming Systems. BioScience 55(7):573-82
- Glenn Geiger and Harold Biellier. 1993. Weeding With Geese. University of Missouri Extension Bulletin G8922.
- How to feed the world By Laurent Belsie (February 20, 2003 edition) The Christian Science Monitor
- Presentation by Ilse A. Rasmussen, Dept. of Crop Protection, Danish Institute of Agricultural Sciences. Sowing time, false seedbed, row distance and mechanical weed control in organic winter wheat
- ^ Lotter, D. (2003). "Organic Agriculture" (PDF). Journal of Sustainable Agriculture. 21 (4).
- IFOAM. Criticisms and Frequent Misconceptions about Organic Agriculture: The Counter-Arguments, Misconception Number 7.
- Pottorff LP. Some Pesticides Permitted in Organic Gardening. Colorado State University Cooperative Extension.
- Marking, L. L. and T. D. Bills. 1976. Toxicity of rotenone to fish in standardized laboratory tests. U. S. Dept. Interior, No. 72. 11 pp.
- Panov, A., S. et al. 2005. Rotenone model of Parkinson disease: multiple brain mitochondria dysrunctions after short term systemic rotenone intoxication. J. Biol. Chem. 280: 42026-42035
- Sherer, T. B, et al. 2003. Mechanism of toxicity in rotenone models of Parkinson's disease. J. Neuroscience 34: 10756-10764.
- Jones, D. 1998. Piperonyl butoxide: the insecticide synergist. Academic Press, London. 323 pp.
- ^ Canadian General Standards Board. CAN/CGSB-32.311-2006.
- ^ OGA. 2004. OGA standard. Organic Growers of Australia. Inc. 32 pp.
- 7 CFR, part 205. U.S. Code of Federal Regulations
- Scheuerell SJ, Mahaffee WF (2004). "Compost tea as a container medium drench for suppressing seedling damping-off caused by Pythium". Phytopathology. 94 (11): 1156–1163. doi:10.1094/PHYTO.2004.94.11.1156. PMID 18944450.
- Brinton W; et al. (2004). "Compost teas: Microbial hygiene and quality in relation to method of preparation" (PDF). Biodynamics: 36–45. Retrieved 2009-04-15.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - ^ USDA National Organic Program, Subpart G. The National List of Allowed and Prohibited Substances. http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr;sid=7f0273852439530d013eb36c05531494;rgn=div7;view=text;node=7:3.1.1.9.32.7.354;idno=7;cc=ecfr
- Edwards-Jones, G. and O. Howells. 2001. The origin and hazard of inputs to crop protection in organic farming systems: are they sustainable? Agric. Systems 67: 31-47
- Leake, A. R. 1999. House of Lords Select Committee on the European Communities. Session 1998-99, 16th Report. Organic Farming and the European Union. p. 81. Cited by Trewavas, A. 2004. A critical assessment of organic farming-and-food assertions with particular respect to the UK and the potential environmental benefits of no-till agriculture. Crop Protection 23: 757-781.
- Caldwell, B., E. B. Rosen, E. Sideman, A. M. Shelton and C. D. Smart. 2005. Resource guide for organic insect and disease management. Cornell Univ.
- Health Canada. 2009. Consultation document on copper pesticides - proposed re-evaluation decision - PRVD2009-04.
- Cooper, J., U. Niggli and C. Leifert (eds.). 2007. Handbook of organic food safety and quality. CRC Press, Boca Raton. 544 pp.
- "European organic farming research projects". Organic Research. Retrieved 2012-06-12.
- "Clouds on the Organic Horizon". CropWatch. Retrieved 14 March 2007.
- Sethurama, G. International Encyclopedia of Agricultural Science and Technology. Mittal Publications. p. 16. ISBN 9788183242196.
- "Organic Foods Standards and Labels: The Facts". USDA. Retrieved 14 March 2007.
- Luis Herrera-Estrella, Ariel Alvarez-Morales (2001). "Genetically modified crops: hope for developing countries?". EMBO Reports. 2 (4). The EMBO journal: 256–258. doi:10.1093/embo-reports/kve075. PMC 1083872. PMID 11306538.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Pamela Ronald, Raoul Admachak (2008). "Tomorrow's Table: Organic Farming, Genetics and the Future of Food". Oxford University Press.
{{cite journal}}
: Cite journal requires|journal=
(help); Unknown parameter|month=
ignored (help) - Control Union World Group. EEC Regulation No. 2092/91
- USDA NOP Program Standards. Retrieved April 2, 2008.
- IFOAM. (2005). The IFOAM Norms
- Organic Materials Review Institute
- National Organic Program Regulations
- Staff, IFOAM, 2009. Misconception Number 38: Organic farmers can only survive because they get subsidies; the system is not fit for economic competitiveness. The organic sector is eating tax-payers money and it goes into the pockets of a few manipulative individuals.
- Halberg, Niels (2006). Global development of organic agriculture: challenges and prospects. CABI. p. 297. ISBN 978-1-84593-078-3.
- Strochlic, R.; Sierra, L. (2007). Conventional, Mixed, and “Deregistered” Organic Farmers: Entry Barriers and Reasons for Exiting Organic Production in California. California Institute for Rural Studies.
- Organic farming by country
- "Organic Farming in the European Union" (PDF). European Commission. p. 30. Retrieved 2012-01-19.
- European Commission – Eurostat. "Eurostat press release 80/2007" (PDF). p. 1. Retrieved 2007-10-07.
- FiBL,OTA. "Organic Market Growth - Facts and Figures". Retrieved 2012-01-18.
- Bauernzeitung (RollAMA survey). "Bio hat Zukunft, aber auch viele Probleme". Retrieved 2012-01-19.
- SixtyTwo International Consultants. "The organic food market in Poland: Ready for take-off". Archived from the original on 2007-09-27. Retrieved 2007-10-08.
- Cult Market Research. "Piata de produse bio din Romania in cifre". Retrieved 2012-01-18.
- Auld, Alison. "Farming with Fidel". Retrieved 2012-02-04.
- Center for Genetic Engineering and Biotechnology. "Cuban GMO Vision" (PDF). Retrieved 2007-10-08.
- Centro de Ingeniería Genética y Biotecnología de Cuba. "DirecciÓn de Investigaciones Agropecuarias". Archived from the original on 2007-09-27. Retrieved 2007-10-08.
- Office of Global Analysis, FAS, USDA. "Cuba's Food & Agriculture Situation Report" (PDF). Retrieved 2008-09-04.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - http://epp.eurostat.ec.europa.eu/cache/ITY_PUBLIC/5-01032010-BP/EN/5-01032010-BP-EN.PDF
- Dimitri, C.; Oberholtzer, L. (2006) EU and US Organic Markets Face Strong Demand Under Different Policies
- Duram 183. Duram, Leslie. Good Growing. Santa Cruz: Bison Books, 2005.
- ^ Welsh, Rick (1999). "Economics of Organic Grain and Soybean Production in the Midwestern United States" (PDF). Henry A. Wallace Institute for Alternative Agriculture.
- Stanhill, G. (1990). The comparative productivity of organic agriculture. Agriculture, Ecosystems, and Environment. 30(1-2):1-26
- Mader; Fliessbach, A; Dubois, D; Gunst, L; Fried, P; Niggli, U; et al. (2002). "Soil Fertility and Biodiversity in Organic Farming". Science. 296 (5573): 1694–1697. doi:10.1126/science.1071148. PMID 12040197.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - Lotter, D. W., Seidel, R. & Liebhardt W. (2003). "The performance of organic and conventional cropping systems in an extreme climate year". American Journal of Alternative Agriculture. 18 (03): 146–154. doi:10.1079/AJAA200345.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Pimentel DP et al (2005) Environmental, Energetic, and Economic Comparisons of Organic and Conventional Farming Systems Bioscience 55(7): 573-582.
- Rodale Farm Trial Site
- Rodale 30 year report
- Badgley C, et al (2007) Organic agriculture and the global food supply. Renewable Agriculture and Food Systems 22(2):86-108. Cited in article by Catherine Brahic for New Scientist, July 12, 2007. Organic farming could feed the world
- ^ Connor, D. J. 2008. Organic agriculture cannot feed the world. Field Crops Res. 106: 187-190.
- The Bichel Committee. 1999. Report from the main committee. Danish Environmental Protection Agency. Conclusions and recommendations of the Committee: 8.7.1 Total phase-out. "A total abolition of pesticide use would result in an average drop in farming yields of between 10% and 25%, at the farm level; the smallest losses would occur in cattle farming. On farms that have a large proportion of special crops, such as potatoes, sugar beet and seed grass, the production losses in terms of quantity would be closer to 50%. These crops would probably be ousted by other crops."
- Pollan, Michael (2008-10-12). "Chief farmer". New York Times. Retrieved 2008-11-15.
- Johnston, A. E. (1986). "Soil organic-matter, effects on soils and crops". Soil Use Management. 2 (3): 97–105. doi:10.1111/j.1475-2743.1986.tb00690.x.
- ARS (2007) Organic Farming Beats No-Till?
- Kirchmann H; et al. (2007). "Comparison of Long-Term Organic and Conventional Crop-Livestock Systems on a Previously Nutrient-Depleted Soil in Sweden". Agronomy Journal. 99: 960–972. doi:10.2134/agronj2006.0061.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - Welsh (1999) The Economics of Organic Grain and Soybean Production in the Midwestern United States.
- A study of 1,804 organic farms in Central America hit by Hurricane Mitch: Holt-Gimenez, E. (2000) Hurricane Mitch Reveals Benefits of Sustainable Farming Techniques. PANNA.
- Goldberg, Bob. "The Hypocrisy of Organic Farmers". AgBioWorld. Retrieved 2007-10-10.
- Leonard, Andrew. "Save the rain forest -- boycott organic?". How The World Works. Retrieved 2007-10-10.
- Chavas JP; et al. (2009). "Organic and Conventional Production Systems in the Wisconsin Integrated Cropping Systems Trial: II". Agronomy Journal. 101 (2): 288. doi:10.2134/agronj2008.0055x. Retrieved 2009-04-07.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - Organic food more expensive than food from traditional agriculture
- Phillipe Renard
- Another example are the "Voedselteams" in Belgium, basically packets with vegetables from community supported agriculture, which are sold at low prices
- ^ Reganold; Glover, JD; Andrews, PK; Hinman, HR; et al. (2001). "Sustainability of three apple production systems". Nature. 410 (6831): 926–930. doi:10.1038/35073574. PMID 11309616.
{{cite journal}}
: Explicit use of et al. in:|author=
(help); Unknown parameter|month=
ignored (help) - Dalgaard; et al. (2001). "A model for fossil energy use in Danish agriculture used to compare organic and conventional farming". Agriculture, Ecosystems and Environment. 87: 51–65.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - Pimental; et al. (1983). "Energy efficiency of farming systems: Organic and conventional agriculture". Agriculture, Ecosystems & Environment. 9: 359–372.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - WSL Survey
- CNN. Consumer surveys show slipping interest in organic products The Hartman Group Organic Marketplace Reports.
- Howard, Phil. (2007) Organic Industry Graphics
- Corp Watch. (2004). Clouds on the Organic Horizon
- "D+C 2011/02 - Arslan - Small farmers benefit from export strategies geared to niche markets - Development and Cooperation - International Journal". Inwent.org. Retrieved 2012-06-12.
- Farmers' Market Growth 1994-2009
- Morison, James, et al (2005). "Survey and analysis of labor on organic farms in the UK and Republic of Ireland", International Journal of Agricultural Sustainability(3):24-43
- "ICapacity Building Study 3: Organic Agriculture and Food Security in East Africa" (PDF). University of Essex.
- UNEP-UNCTAD. (2008). Organic Agriculture and Food Security in Africa. United Nations. Free full-text.
- Howden D. Organic farming 'could feed Africa'. The Independent.
- Marshall, G. (1991). Review of Marketing and Agricultural Economics. 59 (3): 283–296 http://ageconsearch.umn.edu/bitstream/12390/1/59030283.pdf.
{{cite journal}}
: Missing or empty|title=
(help) - Pretty, J; et al. (2000). "An assessment of the total external costs of UK agriculture" (PDF). Agricultural Systems. 65 (2): 113–136. doi:10.1016/S0308-521X(00)00031-7.
{{cite journal}}
: Explicit use of et al. in:|last1=
(help) - Tegtmeier, E.M.; Duffy, M. (2005). "External Costs of Agricultural Production in the United States" (PDF). The Earthscan Reader in Sustainable Agriculture.
- New Zealand's Ministry of Agriculture and Forestry. "A Review of the Environmental/Public Good Costs and Benefits of Organic Farming and an Assessment of How Far These Can be Incorporated into Marketable Benefits". Retrieved 2008-04-20.
- Stolze, M.; Piorr, A.; Häring, A.M. and Dabbert, S. (2000) Environmental impacts of organic farming in Europe. Organic Farming in Europe: Economics and Policy Vol. 6. Universität Hohenheim, Stuttgart-Hohenheim.
- Hansen, Birgitt (2001). "Approaches to assess the environmental impact of organic farming with particular regard to Denmark". Agriculture, Ecosystems & Environment. 83 (1–2): 11–26. doi:10.1016/S0167-8809(00)00257-7.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help); Unknown parameter|month=
ignored (help) - Department for Environment Food and Rural Affairs. "Assessment of the environmental impacts of organic farming" (PDF). Retrieved 2009-09-29.
- Johnson, K.A. and Johnson, D.E. (1995). Methane emissions from cattle. Journal of Animal Science 73: 2483-2492.
- Capper, J.L., Cady, R.A. and Bauman, D.E. (2009). The environmental impact of dairy production: 1944 compared with 2007. Journal of Animal Science 87: 2160-2167.
- Hester, Ronald (2007). Biodiversity under threat. Royal Society of Chemistry. p. 16. ISBN 978-0-85404-251-7.
- "Pesticides in the Diets of Infants and Children". Nap.edu. 2003-06-01. Retrieved 2012-06-12.
- Multiresidue Analytical Procedure for Insecticides Used by Organic Farmers. Journal of Agricultural and Food Chemistry. 1998.
- Beckerman, Janna. "Using Organic Fungicides". Planet Natural. Retrieved 2009-02-05.
- Pesticides, agriculture and the environment(12 December 2005) Written by: Collective Scientific Expertise Unit, Communications Department / Unit: Collective Scientific Expertise Unit / Date of creation: 19 January 2006 / Date of last update: 18 February 2009
- EJF. (2007). The deadly chemicals in cotton. Environmental Justice Foundation in collaboration with Pesticide Action Network UK: London, UK. ISBN 1-904523-10-2.
- "Trends in the Potential for Environmental Risk from Pesticide Loss from Farm Fields". USDA Natural Resources Conservation Service. Archived from the original on 2007-07-12. Retrieved 2007-09-29.
- Kemper, Katherine (2010). Addressing Add Naturally. Xlibris, Corp. pp. i. ISBN 978-1-4535-6052-5.
- ^ Smith-Spangler, C (September 4, 2012). "Are organic foods safer or healthier than conventional alternatives?: a systematic review". Annals of Internal Medicine. 157 (5): 348–366. PMID 22944875.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Magkos F; Arvaniti, F; Zampelas, A (2006). "Organic Food: Buying More Safety or Just Peace of Mind? A Critical Review of the Literature". Critical reviews in food science and nutrition. 46 (1): 23–56. doi:10.1080/10408690490911846. PMID 16403682.
- ^ Bourn D, Prescott J (2002). "A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods". Crit Rev Food Sci Nutr. 42 (1): 1–34. doi:10.1080/10408690290825439. PMID 11833635.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Kouba, M (2003). "Quality of organic animal products". Livestock Production Science. 80: 33–40. doi:10.1016/S0301-6226(02)00318-4.
- ^ Blair, Robert. (2012). Organic Production and Food Quality: A Down to Earth Analysis. Wiley-Blackwell, Oxford, UK. ISBN 13: 9780813812175
- Williams, C. M. February 2002. Nutritional quality of organic food: shades of grey or shades of green? Proceedings of the Nutrition Society. 61(1): 19–24
- Comparison of composition (nutrients and other substances) of organically and conventionally produced foodstuffs: a systematic review of the available literature, Food Standards Agency. These studies reviewed all of the relevant research published in peer-reviewed journals between 1 January 1958 and 29 February 2008 (excluding articles that did not have an English abstract). One was a 'comparison of composition (nutrients and other substances) of organically and conventionally produced foodstuffs'.
- Dangour A et al (2009) Comparison of putative health effects of organically and conventionally produced foodstuffs Report for the UK Food Standards Agency
- Curl, C. L.; et al. (2003). study "Organophosphorous Pesticide Exposure of Urban and Suburban Preschool Children with Organic and Conventional Diets". Environmental Health Perspectives, 111(3). Retrieved 2007-11-03.
{{cite web}}
: Check|url=
value (help); Explicit use of et al. in:|author=
(help); Unknown parameter|month=
ignored (help) - Lu, Chensheng; et al. (2006). "Organic Diets Significantly Lower Children's Exposure to Organophosphorus Pesticides" (PDF). Environmental Health Perspectives 114(2). Retrieved 2007-11-04.
{{cite web}}
: Explicit use of et al. in:|author=
(help); Unknown parameter|month=
ignored (help) - l'Hirondel, J. and J.-L. l'Hirondel. 2002. Nitrate and man: toxic, harmless or beneficial? CABI, Wallingford. 168 pp.
- Seattle PI (2008). The lowdown on topsoil: it's disappearing
- "No Shortcuts in Checking Soil Health". USDA ARS. Retrieved 2007-10-02.
- ^ LaSalle, T. and P. Hepperly (2008). Regenerative Organic Farming: A Solution to Global Warming. Rodale Institute. The Rodale Institute has been comparing organic agricultural systems and conventional systems since 1981.
- Hepperly, Paul, Jeff Moyer, and Dave Wilson. “Developments in Organic No-till Agriculture.” Acres USA: The Voice of Eco-agriculture September 2008: 16-19. And Roberts, Paul. “The End of Food: Investigating a Global Crisis.” Interview with Acres USA. Acres USA: The Voice of Eco-Agriculture October 2008: 56-63.
- Meleca (2008). The Organic Answer to Climate Change.
- Tilman, D; Fargione, J; Wolff, B; D'antonio, C; Dobson, A; Howarth, R; Schindler, D; Schlesinger, WH; Simberloff, D (2006-03-21). "Forecasting Agriculturally Driven Global Climate Change". Science. 292 (5515): 281–4. Bibcode:2001Sci...292..281T. doi:10.1126/science.1057544. PMID 11303102. Retrieved 2007-09-30.
- Kramer, SB; Reganold, JP; Glover, JD; Bohannan, BJ; Mooney, HA (2006-03-21). "Reduced nitrate leaching and enhanced dentrifier activity and efficiency in organically fertilized soils". Proceedings of the National Academy of Sciences. 103 (12). United States National Academy of Sciences: 4522–7. Bibcode:2006PNAS..103.4522K. doi:10.1073/pnas.0600359103. PMC 1450204. PMID 16537377. Retrieved 2007-09-30.
- Yoon, Carol Kaesuk (January 20, 1998). "A "Dead Zone" Grows in the Gulf of Mexico". New York Times. Retrieved 2007-11-04.
- Alföldi, Thomas; Lockeretz, William; Niggli, Urs; Movements, International Federation of Organic Agriculture (2000). Environmental impact and macro-economic feasibility of organic agriculture in the Danube River Basin. Proceedings of the 13th International IFOAM Conference, p. 160-163. ISBN 978-3-7281-2754-9. Retrieved 2007-11-04.
- Beman, M. (2005). "Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean" (PDF). Nature 25(2). Retrieved 2007-11-04.
{{cite web}}
: Italic or bold markup not allowed in:|publisher=
(help); Unknown parameter|month=
ignored (help) - ^ Hole, D.G.; Perkins, A.J.; Wilson, J.D.; Alexander, I.H.; Grice, P.V.; Evans, A.D. (2005). "Does organic farming benefit biodiversity?" (PDF). Biological Conservation. 122 (1): 113–130. doi:10.1016/j.biocon.2004.07.018.
- ^ Gabriel and Tscharntke 2006 Gabriel D, Roschewitz I, Tscharntke T & Thies C (2006). Beta diversity at different spatial scales: plant communities in organic and conventional agriculture. Ecological Applications 2011-2021.
- Bengtsston, J.; Ahnstrom, J.; Weibull, A. (2005). "The effects of organic agriculture on biodiversity and abundance: a meta-analysis". Journal of Applied Ecology. 42 (2): 261–269. doi:10.1111/j.1365-2664.2005.01005.x.
- Blakemore, 2000 <http://bio-eco.eis.ynu.ac.jp/eng/database/earthworm/Haughley%5CHaughley.pdf>
- van Elsen, T. (2000). "Species diversity as a task for organic agriculture in Europe". Agriculture, Ecosystems and Environment. 77 (1–2): 101–109. doi:10.1016/S0167-8809(99)00096-1.
- Perrings, C; Jackson, L; Bawa, K; Brussaard, L; Brush, S; Gavin, T; Pascual, U; De Ruiter, P; De Ruiter, Peter; et al. (2006). "Biodiversity in Agricultural Landscapes: Saving Natural Capital without Losing Interest". Conservation Biology. 20 (2): 263–264. doi:10.1111/j.1523-1739.2006.00390.x. PMID 16903084.
{{cite journal}}
: Explicit use of et al. in:|last=
(help) - Andrew Leonard. "Save the rain forest — boycott organic?". How The World Works. Retrieved 2007-10-10.
- Anthony Trewavas (2001). "Urban myths of organic farming". Nature 410: 409-410.
{{cite web}}
: Italic or bold markup not allowed in:|publisher=
(help); Unknown parameter|month=
ignored (help) - Exchange between Trewavas and Lord P. Melchett summarizes the debate: major supermarket
- Trewavas, A. 2004. A critical assessment of organic farming-and-food assertions with particular respect to the UK and the potential environmental benefits of no-till agriculture. Crop Protection 23: 757-781.
- Quin'ones, M. A., N. E. Borlaug and C. R. Dowswell. 2003. A fertilizer-based green revolution for Africa. In: Beresh, R. J., P. A. Sanchez and F. Calhoun. Replenishing soil fertility in Africa. Soil Science Society of America Special Publ. No. 51. Madison, Wisconsin. pp. 81-95.
- Assessment of the overall consequences of phasing out the total or partial use of pesticides. They looked at farming, market gardening, fruit growing, and forestry, and the effects of pesticides on health and the environment. The Bichel Committee.
- Badgley, C., J. Moghtader, E. Quintero, E. Zakem, M. J. Chappell, K. Avilés-Vásquez, A. Samulon and I. Perfecto. 2007. Organic agriculture and the global food supply. Renewable Agric. Food Systems 22: 86-108.
- Cassman, K. G. Editorial response by Kenneth G. Cassman: Can organic agriculture feed the world - science to the rescue? Renewable Agric. Food Systems 22: 83-84.
- Avery, A. 2007. ‘Organic abundance’ report: fatally flawed. Renewable Agric. Food Systems 22: 321-323.
- Gianessi, L. 2009. The potential for organic agriculture to feed the world is being oversold. Outlooks Pest Manage. 20: 4-5.
- ^ "Wer hat die laengste Biochionase" (PDF). Bio-aktuell.
- "Organic Produce Production and Food Safety" (PDF). UC Davis Cooperative Extension.
- Marian Burros (1999-02-17). "EATING WELL; Anti-Organic, And Flawed". The New York Times. Retrieved 2007-12-14.
- WHO News Outbreaks of E. coli O104:H4 infection: update 29, 07-07-2011.
- Cowell, Alan. Germany Says Bean Sprouts Likely E. Coli Source. New York Times, June 10, 2011
- Bob Goldberg. "The Hypocrisy of Organic Farmers". AgBioWorld. Retrieved 2007-10-10.
Further reading
- Ableman, Michael (1993). From the Good Earth: A Celebration of Growing Food Around the World. HNA Books. ISBN 0-8109-2517-6.
{{cite book}}
: Cite has empty unknown parameter:|coauthors=
(help); Unknown parameter|month=
ignored (help) - Avery A. (2006) The Truth About Organic Foods (Volume 1, Series 1) Henderson Communications, L.L.C. ISBN 0-9788952-0-7
- Committee on the Role of Alternative Farming Methods in Modern Production Agriculture, National Research Council. 1989. Alternative Agriculture. National Academies Press.
- Gettelman, Elizabeth (2006-08-11). "Farmworkers to Farmers". Mother Jones. Retrieved 2007-08-07.-An innovative program in California trains mostly immigrant workers how to succeed as organic farmers.
- Guthman J. 2004, Agrarian Dreams: The Parodox of Organic Farming in California, Berkeley and London: University of California Press, 2004, ISBN 978-0-520-24094-0
- Lampkin & Padel. 1994. The Economics of Organic Farming: An International Perspective. Guildford: CAB International. ISBN 0-85198-911-X
- OECD. (2003). Organic Agriculture: Sustainability, Markets, and Policies. CABI International. Free full-text.
- Beecher N.A.; et al. (2002). "Agroecology of Birds in Organic and Nonorganic Farmland". Conservation Biology. 6: 1621–1630.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - Brown, R.W. (1999b). "Margin/field interfaces and small mammals". Aspects of Applied Biology. 54: 203–210.
- Emsley, John (2001). "Going One Better Than Nature". Nature. 410 (6829): 633–634. doi:10.1038/35070632.
{{cite journal}}
: Invalid|ref=harv
(help); Unknown parameter|month=
ignored (help) - Gabriel, D., and Tscharntke, T. (2007) Insect pollinated plants benefit from organic farming. Agriculture, Ecosystems and Environment 118: 43-48
- Kuepper, George and Gegner, Lance. "Organic Crop Production Overview", ATTRA — National Sustainable Agriculture Information Service: August 2004.
- Paull, John (2006). "The Farm as Organism: The Foundational Idea of Organic Agriculture". Journal of Bio-Dynamics Tasmania. 83: 14–18.
{{cite journal}}
: Invalid|ref=harv
(help) - Smil, Vaclav (2001). Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food. MIT Press. ISBN 0-262-19449-X.
{{cite book}}
: Invalid|ref=harv
(help)- Wheeler, S.A. (2008). "What influences agricultural professionals' views towards organic agriculture?". Ecological Economics. 65: 145–154. doi:10.1016/j.ecolecon.2007.05.014.
- Wickramasinghe L.P., Harris S., Jones G., Vaughan N. (2003). "Bat activity and species richness on organic and conventional farms: impact of agricultural intensification". Journal of Applied Ecology. 40: 984–993. doi:10.1111/j.1365-2664.2003.00856.x.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - "Organic Crop Production Overview at ATTRA, the National Sustainable Agriculture Information Service". Retrieved 2006-01-06.
- Organic Farming Compliance Handbook, Organic Practice Guide.
External links
- Template:Dmoz
- Organic Eprints Database of organic agriculture research papers
- Organic Farming - European Commission
- Food and Agriculture Organization of the United Nations' Organic Agriculture Program
- Organic Production and Organic Food: Information Access Tools. Identifies sources to research on organic agriculture topics from the Alternative Farming Systems Information Center, National Agricultural Library.
- Organic Agriculture Information from the eOrganic Community of Practice with eXtension - Information from America's Land Grant University System and Partners
- List of Organic Farming related Organizations on WiserEarth
- Importance of Organic Farming in Terms of Food Safety A featured article on Agriculture Guide
- Organic farming can feed the world, U-M study shows, University of Michigan, 2007