Revision as of 09:10, 5 August 2012 editMathsci (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers66,107 edits →See also← Previous edit | Revision as of 00:21, 26 February 2013 edit undoAddbot (talk | contribs)Bots2,838,809 editsm Bot: Migrating 9 interwiki links, now provided by Wikidata on d:q975727 (Report Errors)Next edit → | ||
Line 30: | Line 30: | ||
] | ] | ||
] | ] | ||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] |
Revision as of 00:21, 26 February 2013
Not to be confused with Pigeonhole principle.In mathematics, Dirichlet's principle in potential theory states that, if the function u(x) is the solution to Poisson's equation
on a domain of with boundary condition
then u can be obtained as the minimizer of the Dirichlet's energy
amongst all twice differentiable functions such that on (provided that there exists at least one function making the Dirichlet's integral finite). This concept is named after the German mathematician Lejeune Dirichlet.
Since the Dirichlet's integral is bounded from below, the existence of an infimum is guaranteed. That this infimum is attained was taken for granted by Riemann (who coined the term Dirichlet's principle) and others until Weierstrass gave an example of a functional that does not attain its minimum. Hilbert later justified Riemann's use of Dirichlet's principle.
See also
References
- Courant, R. (1950), Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces. Appendix by M. Schiffer, Interscience
- Lawrence C. Evans (1998), Partial Differential Equations, American Mathematical Society, ISBN 978-0-8218-0772-9
- Weisstein, Eric W. "Dirichlet's Principle". MathWorld.