Misplaced Pages

Kepler-91b: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 22:02, 20 January 2014 editHebrides (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers105,074 edits clean up, fill out reference,, replaced: degree →  degree, million →  million, days →  days, removed: using AWB← Previous edit Revision as of 06:11, 4 April 2014 edit undoHebrides (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers105,074 edits Claims for discovery: ref name using AWBNext edit →
Line 48: Line 48:
Kepler-91b was detected by analyzing the data of ] where a transit-like signal was found. Initially thought to be a false positive due to light curve variations by a self-luminous object, it was later revealed that due low density of Kepler-91's shape is distorted to slightly ellipsoidal shape due to gravitational effects of the planet. Ellipsoidal light variations caused by Kepler-91b constitute more than the third of light variations compared to transit depth. Ellipsoidal light variations also allowed to determine the planet's mass. It was also found that Kepler-91b reflects some of the starlight from its star.<ref></ref> Kepler-91b was detected by analyzing the data of ] where a transit-like signal was found. Initially thought to be a false positive due to light curve variations by a self-luminous object, it was later revealed that due low density of Kepler-91's shape is distorted to slightly ellipsoidal shape due to gravitational effects of the planet. Ellipsoidal light variations caused by Kepler-91b constitute more than the third of light variations compared to transit depth. Ellipsoidal light variations also allowed to determine the planet's mass. It was also found that Kepler-91b reflects some of the starlight from its star.<ref></ref>


Further analysis managed to question the planetary nature of the object.<ref name="ref-1984145548">{{cite web|url=http://arxiv.org/abs/1401.1207|title=&#91;1401.1207&#93; A High False Positive Rate for Kepler Planetary Candidates of Giant Stars using Asterodensity Profiling|publisher=arxiv.org|accessdate=2014-01-20}}</ref> Further analysis managed to question the planetary nature of the object.<ref name="arxiv">{{cite web|url=http://arxiv.org/abs/1401.1207|title=&#91;1401.1207&#93; A High False Positive Rate for Kepler Planetary Candidates of Giant Stars using Asterodensity Profiling|publisher=arxiv.org|accessdate=2014-01-20}}</ref>


==Characteristics== ==Characteristics==

Revision as of 06:11, 4 April 2014

Template:Planetbox begin Template:Planetbox star Template:Planetbox character Template:Planetbox orbit Template:Planetbox discovery Template:Planetbox catalog Template:Planetbox end

Kepler-91b is an unconfirmed planet orbiting Kepler-91, star slightly more massive than the Sun. Kepler-91 has left the main sequence and is now a red giant branch star.

Claims for discovery

Kepler-91b was detected by analyzing the data of Kepler spacecraft where a transit-like signal was found. Initially thought to be a false positive due to light curve variations by a self-luminous object, it was later revealed that due low density of Kepler-91's shape is distorted to slightly ellipsoidal shape due to gravitational effects of the planet. Ellipsoidal light variations caused by Kepler-91b constitute more than the third of light variations compared to transit depth. Ellipsoidal light variations also allowed to determine the planet's mass. It was also found that Kepler-91b reflects some of the starlight from its star.

Further analysis managed to question the planetary nature of the object.

Characteristics

Kepler-91b is about 14% less massive than Jupiter while being more than 35% larger, making it less than half of the density of water. Kepler-91b orbits around the host star in about 6.25 days. Despite being one of the least edge-on orbits relative to Earth with inclination being about 68.5 degrees, transit was detected due to low semi-major axis to host star radius ratio.

Kepler-91b is expected to be engulfed by the parent star within about 55 million years.

References

  1. Kepler-91b: a planet at the end of its life. Planet and giant host star properties via light-curve variations
  2. "[1401.1207] A High False Positive Rate for Kepler Planetary Candidates of Giant Stars using Asterodensity Profiling". arxiv.org. Retrieved 2014-01-20.
  3. Kepler-91b: a planet at the end of its life. Planet and giant host star properties via light-curve variations J. Lillo-Box, D. Barrado, A. Moya, B. Montesinos, J. Montalbán, A. Bayo, M. Barbieri, C. Régulo, L. Mancini, H. Bouy, T. Henning: 14 Dec 2013

External links

Exoplanets
Main topics
Sizes
and
types
Terrestrial
Gaseous
Other types
Formation
and
evolution
Systems
Host stars
Detection
Habitability
Catalogues
Lists
Other
2013 in space
Space probe launches Space probes launched in 2013
Space probes
Space observatories
  • IRIS (solar observation; Jun 2013)
  • Hisaki (ultraviolet observation; Sep 2013)
  • Gaia (astrometric observation; Dec 2013)


Impact events
Selected NEOs
Exoplanets Exoplanets discovered in 2013
Discoveries
Novae
Comets Comets in 2013
Space exploration


Stub icon

This extrasolar-planet-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: