Revision as of 04:08, 25 January 2014 editMonkbot (talk | contribs)Bots3,695,952 editsm →References: Fix CS1 deprecated date parameter errors← Previous edit | Revision as of 20:32, 11 April 2014 edit undo141.218.35.129 (talk) gravity exomoonNext edit → | ||
Line 1: | Line 1: | ||
This is the '''list of 19 ] ]''', sorted by projected separations. To find planets using that method, the background star is temporarily magnified by a foreground star because of the gravity that bends light. If the foreground star has a planet, the light from background star would be slightly brighter than the star with no planet. Studying the brightness difference of background star between the foreground star with planets and foreground star with no planets, then mass can be estimated. The projected separation can be determined from how much the light bended. | This is the '''list of 19 ] ]''', sorted by projected separations. To find planets using that method, the background star is temporarily magnified by a foreground star because of the ] that bends light. If the foreground star has a planet, the light from background star would be slightly brighter than the star with no planet. Studying the brightness difference of background star between the foreground star with planets and foreground star with no planets, then mass can be estimated. The projected separation can be determined from how much the light bended. | ||
The most massive planet detected by microlensing is ], which masses 3.7 M<sub>J</sub>; the least massive is ], which masses 0.01 M<sub>J</sub> or 3.3 M<sub>⊕</sub>. The widest separation between a planet and a star is MOA-bin-1b, which is 8.3 AU; the shortest separation is MOA-2007-BLG-192Lb, which is 0.66 AU. | The most massive planet detected by microlensing is ], which masses 3.7 M<sub>J</sub>; the least massive is ], which masses 0.01 M<sub>J</sub> or 3.3 M<sub>⊕</sub>. The widest separation between a planet and a star is MOA-bin-1b, which is 8.3 AU; the shortest separation is MOA-2007-BLG-192Lb, which is 0.66 AU. |
Revision as of 20:32, 11 April 2014
This is the list of 19 extrasolar planets detected by microlensing, sorted by projected separations. To find planets using that method, the background star is temporarily magnified by a foreground star because of the gravity that bends light. If the foreground star has a planet, the light from background star would be slightly brighter than the star with no planet. Studying the brightness difference of background star between the foreground star with planets and foreground star with no planets, then mass can be estimated. The projected separation can be determined from how much the light bended.
The most massive planet detected by microlensing is MOA-bin-1b, which masses 3.7 MJ; the least massive is MOA-2007-BLG-192Lb, which masses 0.01 MJ or 3.3 M⊕. The widest separation between a planet and a star is MOA-bin-1b, which is 8.3 AU; the shortest separation is MOA-2007-BLG-192Lb, which is 0.66 AU.
There are 2 members of the multi-planet systems.
Yellow rows denote the members of the multi-planet system
Planet | Mass (MJ) | Projected separation (AU) | Period (d) | Eccentricity | Inclination (°) | Year of discovery |
---|---|---|---|---|---|---|
MOA-2007-BLG-192L b | 0.01 | 0.66 | 2008 | |||
MOA-2007-BLG-400L b | 0.9 | 0.85 | 2008 | |||
MOA-2011-BLG-293L b | 2.4 | 1.0 | 2012 | |||
MOA-2008-BLG-310L b | 0.23 | 1.25 | 2009 | |||
MOA-2009-BLG-387L b | 2.6 | 1.8 | 1970 | 2011 | ||
MOA-2009-BLG-319 b | 0.157 | 2.0 | 2010 | |||
OGLE-2005-BLG-390L b | 0.017 | 2.1 | 3500 | 2005 | ||
OGLE-2006-BLG-109L b | 0.727 | 2.3 | 1790 | 64 | 2008 | |
OGLE-2005-BLG-169L b | 0.04 | 2.8 | 3300 | 2005 | ||
MOA-2009-BLG-266L b | 0.0327 | 3.2 | 2780 | 2010 | ||
OGLE-2007-BLG-368L b | 0.0694 | 3.3 | 2008 | |||
OGLE-2005-BLG-071L b | 3.5 | 3.6 | ~ 3600 | 2005 | ||
OGLE-2006-BLG-109L c | 0.271 | 4.5 | 4931 | 0.15 | 64 | 2008 |
OGLE-2003-BLG-235Lb | 2.6 | 5.1 | 2004 | |||
MOA-bin-1 b | 3.7 | 8.3 | 2012 | |||
OGLE-2012-BLG-0026L b | 0.11 | 3.82 | 2012 | |||
OGLE-2012-BLG-0026L c | 0.68 | 4.63 | 2012 | |||
MOA-2010-BLG477L b | 1.5 | 2±1 | 2012 | |||
OGLE-2011-BLG-0251 b | 0.53±0.21 | 2.72±0.75 or 1.5±0.5 | 2012/2013 | |||
OGLE-2012-BLG-0406L b | 2.73±0.43 | 3.45±0.26 | 2013 | |||
OGLE-2012-BLG-0358L b | 1.9±0.2 | 0.87 | 2013 | |||
MOA-2008-BLG-379 b | 5±2.5 | 4±1.6 | 2013 | |||
MOA-2010-BLG-328L b | 0.03 ± 0.0075 | 0.92 | 2013 | |||
MOA-2008-BLG-379 b | 5±2.5 | 4±1.6 | 2013 | |||
MOA-2011-BLG-262 or MOA-2011-BLG-262 b | ~3.2 or 0.055 | Free-floating or ~1 | 2013 |
Notes
- The nature of the observed system is unclear. It is either a rogue planet with about 3.2MJ masses and a 0.5M⊕ exomoon or a red dwarf with 18M⊕ planet.
References
- Bennett, D. P.; et al. (2008). "A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192". The Astrophysical Journal. 684 (1): 663–683. arXiv:0806.0025. Bibcode:2008ApJ...684..663B. doi:10.1086/589940.
- Dong, Subo; et al. (2009). "Microlensing Event MOA-2007-BLG-400: Exhuming the Buried Signature of a Cool, Jovian-Mass Planet". The Astrophysical Journal. 698 (2): 1826–1837. arXiv:0809.2997. Bibcode:2009ApJ...698.1826D. doi:10.1088/0004-637X/698/2/1826.
- Janczak, Julia; et al. (2010). "Sub-Saturn Planet MOA-2008-BLG-310Lb: Likely To Be In The Galactic Bulge". The Astrophysical Journal. 711 (2): 731. arXiv:0908.0529. Bibcode:2010ApJ...711..731J. doi:10.1088/0004-637X/711/2/731.
- Batista, Virginie; et al. (2011). "MOA-2009-BLG-387Lb: A massive planet orbiting an M dwarf". Astronomy and Astrophysics. 529. arXiv:1102.0558. Bibcode:2011yCat..35299102B. doi:10.1051/0004-6361/201016111.
- Miyake, N.; et al. (2011). "A Sub-Saturn Mass Planet, MOA-2009-BLG-319Lb" (PDF). The Astrophysical Journal. 728 (2). article number 120. arXiv:1010.1809. Bibcode:2011ApJ...728..120M. doi:10.1088/0004-637X/728/2/120.
- Beaulieu, J.-P.; et al. (January 2006). "Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing". Nature. 439 (7075): 437–440. arXiv:astro-ph/0601563. Bibcode:2006Natur.439..437B. doi:10.1038/nature04441. PMID 16437108.
- ^ Gaudi; et al. (2008). "Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing". Science. 319 (5865): 927–930. arXiv:0802.1920. Bibcode:2008Sci...319..927G. doi:10.1126/science.1151947. PMID 18276883.
- Gould, A.; et al. (2006). "Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common". The Astrophysical Journal Letters. 644 (1): L37 – L40. arXiv:astro-ph/0603276. Bibcode:2006ApJ...644L..37G. doi:10.1086/505421.
- Muraki, Y.; et al. (2011). "Discovery and Mass Measurements of a Cold, 10 Earth Mass Planet and Its Host Star". The Astrophysical Journal. 741 (1). 22. arXiv:1106.2160. Bibcode:2011ApJ...741...22M. doi:10.1088/0004-637X/741/1/22.
- Sumi, T.; et al. (2010). "A Cold Neptune-Mass Planet OGLE-2007-BLG-368Lb: Cold Neptunes Are Common". The Astrophysical Journal. 710 (2): 1641–1653. arXiv:0912.1171. Bibcode:2010ApJ...710.1641S. doi:10.1088/0004-637X/710/2/1641.
- Dong, Subo; et al. (2009). "OGLE-2005-BLG-071Lb, the Most Massive M Dwarf Planetary Companion?". The Astrophysical Journal. 695 (2): 970–987. arXiv:0804.1354. Bibcode:2009ApJ...695..970D. doi:10.1088/0004-637X/695/2/970.
- Bennett, David P.; et al. (2006). "Identification of the OGLE-2003-BLG-235/MOA-2003-BLG-53 Planetary Host Star". The Astrophysical Journal Letters. 647 (2): L171 – L174. arXiv:astro-ph/0606038. Bibcode:2006ApJ...647L.171B. doi:10.1086/507585.
- MOA 2010-BLG-477Lb: constraining the mass of a microlensing planet from microlensing parallax, orbital motion and detection of blended light
- http://iopscience.iop.org/0004-637X/779/2/91/article
- http://arxiv.org/abs/1312.3951
External links
- "Candidates detected by microlensing". The Extrasolar Planets Encyclopaedia. Retrieved 2011-01-20.
- "Exoplanets Data Explorer". Retrieved 2011-01-20.