Misplaced Pages

Talk:Dark matter: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 00:11, 2 November 2014 editLowercase sigmabot III (talk | contribs)Bots, Template editors2,296,608 editsm Archiving 1 discussion(s) to Talk:Dark matter/Archive 6) (bot← Previous edit Revision as of 14:51, 12 November 2014 edit undoWavyinfinity (talk | contribs)220 edits Pseudoscience: new sectionNext edit →
Line 99: Line 99:
== Unseen vs. unseeable == == Unseen vs. unseeable ==
From a historical point of view, there must have been a transition from "dark matter" meaning matter that we haven't seen (because it isn't very bright / our telescopes are not sufficiently sensitive) to matter that cannot be seen (in the electromagnetic sense) to matter that does not feel the strong force. If there are names or dates associated with these transitions could we add them to the article? ] (]) 11:20, 10 October 2014 (UTC) From a historical point of view, there must have been a transition from "dark matter" meaning matter that we haven't seen (because it isn't very bright / our telescopes are not sufficiently sensitive) to matter that cannot be seen (in the electromagnetic sense) to matter that does not feel the strong force. If there are names or dates associated with these transitions could we add them to the article? ] (]) 11:20, 10 October 2014 (UTC)

== Pseudoscience ==

It is suggested to place this article under the category ].] (]) 14:51, 12 November 2014 (UTC)

Revision as of 14:51, 12 November 2014

Skip to table of contents
This is the talk page for discussing improvements to the Dark matter article.
This is not a forum for general discussion of the article's subject.
Article policies
Find sources: Google (books · news · scholar · free images · WP refs· FENS · JSTOR · TWL
Archives: Index, 1, 2, 3, 4, 5, 6, 7, 8Auto-archiving period: 3 months 
This page is not a forum for general discussion about Dark matter. Any such comments may be removed or refactored. Please limit discussion to improvement of this article. You may wish to ask factual questions about Dark matter at the Reference desk.
Former good articleDark matter was one of the Natural sciences good articles, but it has been removed from the list. There are suggestions below for improving the article to meet the good article criteria. Once these issues have been addressed, the article can be renominated. Editors may also seek a reassessment of the decision if they believe there was a mistake.
Article milestones
DateProcessResult
April 4, 2006Peer reviewReviewed
January 28, 2007Good article nomineeListed
July 11, 2009Good article reassessmentDelisted
Current status: Delisted good article

Template:Vital article

This article has not yet been rated on Misplaced Pages's content assessment scale.
It is of interest to multiple WikiProjects.
Please add the quality rating to the {{WikiProject banner shell}} template instead of this project banner. See WP:PIQA for details.
WikiProject iconPhysics Top‑importance
WikiProject iconThis article is within the scope of WikiProject Physics, a collaborative effort to improve the coverage of Physics on Misplaced Pages. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.PhysicsWikipedia:WikiProject PhysicsTemplate:WikiProject Physicsphysics
TopThis article has been rated as Top-importance on the project's importance scale.
Please add the quality rating to the {{WikiProject banner shell}} template instead of this project banner. See WP:PIQA for details.
WikiProject iconAstronomy Top‑importance
WikiProject iconThis article is within the scope of WikiProject Astronomy, which collaborates on articles related to Astronomy on Misplaced Pages.AstronomyWikipedia:WikiProject AstronomyTemplate:WikiProject AstronomyAstronomy
TopThis article has been rated as Top-importance on the project's importance scale.
Media mentionThis article has been mentioned by a media organization:

Archiving icon
Archives
Index
Archive 1Archive 2Archive 3
Archive 4Archive 5Archive 6
Archive 7Archive 8


This page has archives. Sections older than 90 days may be automatically archived by Lowercase sigmabot III when more than 3 sections are present.

Electro-Gravity via Chronon field as the reason for Dark Matter

To undesratnd Dark Matter by Suchard's theory it is first necessary to look at another long denied effect "electro-gravity" and understand why it defied detection. Electro-gravitaty according to E. Suchard's theory is based on charge separation and is NOT the usual Biefeld-Brown ionocraft/lifter because a pico-farad capacitor, of any shape under 50000 volts, is not capable of maintaining enough charges to manifest measurable results of real electro-gravity in vacuum. The predicted effect depends on the electric field divergence and therefore on charge densities and on their integration but not directly on the electric field as in conventional ionocrafts. Equation (30) in Suchard's paper has a divergence component, that according to interpretation (6) possibly without the 2 in the denominator, offers a way to achieve electro-gravity via the non-inertial term -2Div(U)P(Myu)P(Nu)/Z in (30) where P(Myu)P(Nu)/Z deviates from the local notion of conservation laws and reminds of Dennis Sciama's Inertial Induction Cite error: The <ref> tag has too many names (see the help page)., Cite error: The <ref> tag has too many names (see the help page). though the full theory is with a complex probabilistic time field that results in a more complex equation. The resulting postulated gravitational field resembles an electric dipole and offers elevation on the expense of the trajectories of far bodies of mass quite the same way ebb and tide take energy from the Earth rotation and moon's trajectory. According to that assumption, the divergence term coincides with electric charges and therefore can explain the Dark Matter effect by a negligible excess of intra-galactic negative charges if the constant of electro gravity is 1/8PiK. K is the constant of gravity and Pi=3.1415... and positive charges if the constant is 1/K. The conservation law (31) with zero charge Div(U)=0 is the ordinary local conservation. Matter fields in Suchard's theory prohibit inertial motion, i.e. matter is expressible by an acceleration field as an antisymmetric matrix that rotates the velocity vector of any particle that can measure proper time and results in it's acceleration in the field. The anti-symmetric matrix is a member of the Lie Algebra of SU(4) and it describes rotation and scaling without the need for Clifford Algebras. This acceleration field does not affect photons and does not directly change the space-time curvature. It takes a very strong electric field of about 1 Mega Volts over 1mm to expose an acceleration of 8cm/Sec^2 of even uncharged particles in an electric field. The non-inertial acceleration, though dependent on mass, is not gravity despite the dependence on mass. Gravity itself results from the divergence of a curvature vector that coincides with the electric field. In the classical limit, the non-inertial acceleration is opposite in direction to the gravity that results from the electric charges. The constant that describes the relation between the square norm of a curvature vector and energy, decides which "force" will be dominant. If it is more than 1/4PiK then the gravity that emanates from electric charges is stronger than the acceleration field which is opposite in direction. If it is less than 1/PiK then the acceleration field that prohibits geodesic motion, is stronger. Written covariantly, an acceleration field is an antisymmetric matrix and not a 4-vector. Electrons have an attracting acceleration field and a repulsive gravitational field and positrons have a repulsive acceleration field and an attractive gravitational field. Matter itself results from coupling between an event wave function and a field of time - not a coordinate of time !!! Matter is described in an appendix in Suchard's paper, "Event Theory", as a non-zero curvature vector and a series of wave functions, each representing an event which by Sam Vaknin's theory is an actual transfer of the time itself. Suchard's paper complements a previous research from 1982 by Sam Vaknin on a Chronon field amendment to Dirac's equation

References

  1. Suchard, Eytan (June 2014), "Electro-gravitational Technology via Chronon Field", Physical Science International Journal, p. 1158, doi:10.9734/PSIJ/2014/11129
  2. California Miramar University, available on Microfiche in UMI and from the Library of Congress http://catalog2.loc.gov/vwebv/holdingsInfo?searchId=115001&recPointer=0&recCount=25&searchType=1&bibId=3810279
  3. Vaknin S Time Asymmetry Re-Visited

- above text added by user talk:‎Eytan il 22:24 17/9/2014.

I am not convinced that we can use any of this in the article, as when I do a search for the topic, it does not seem to be widely discussed by other writers. Graeme Bartlett (talk) 23:10, 17 September 2014 (UTC)

Non baryonic dark matter must be invisible, and with no EM interaction, can't be touched or felt. There are no lumps of it and no chemistry of it.

Though the article makes clear that a little dark matter might be baryonic and thus made of atoms, the lede also says clearly, and the rest of the paper confirms, that most dark matter cannot be baryonic (else it would screw up Big Bang element ratios), and thus cannot be made of atoms, but instead must be made of some new undiscovered electrically neutral particle.

Matter made of some new neutral particle and NOT atoms, is not otherwise "simply matter that is not reactant to light" (as the lede says). That's a heck of a big "simply!" What does not "reactant" to light, really mean? It means it is utterly transparent, not just "dark"-- but the lede doesn't say this (it should). In addition, the neutral particles feel gravity and (maybe) the weak force, but if they do not feel the EM force, they are not only transparent, but they cannot be felt or touched. Since feeling and touching are EM interactions. Also so is chemistry, and thus there is no dark matter chemistry. There are (thus) no lumps of dark matter, as without EM interaction the particles have no way to stick to each other or to anything else (except gravitationally). It follows that dark matter is quite ghostly-- not only invisible but also physically insubstantial. A non-gravitational portion of it could go right through you and you'd never know it. It's insubstantial as the sterile neutrinos some people think it might be. But even if not, it must act like neutrinos, and we all know how hard THEY are to detect. Millions of them go through every square cm of us every second, and we never notice.

So, the lede should say all this. The largest part of dark matter is thought to be transparent, not made of atoms, has no chemistry, is particulate with no lumps, is not touchable, and is completely insubstantial. It is not "ponderable" at our scale, where we do not feel gravity (or the weak force). It also doesn't feel the strong force, so it isn't like insubstantial neutrons that still kill you from radiation. We don't see or feel neutrons or neutrinos, and dark matter is like them. I don't think there's anything controversial about any of this. No astronomer suggests that we hunt for dark matter like hunting for Harry Potter under his cloak of invisibility-- by stumbling around until we bark our knee on a lump of it, than pick it up with tongs and put it in a labeled bottle. But as the lede is now written, there's absolutely nothing in it to suggest why we couldn't do just that. Thus, the lack of EM interaction for most dark matter is asserted, but even though the EM interaction is how we see, feel, and touch, nothing in the lede tells us the certain implications of no strong interaction or EM interaction in physics or real life, which is that particles become neutrino-like. Which you cannot see, touch, or interact with, in any normal way. Would you mind if I fixed this? SBHarris 00:24, 23 September 2014 (UTC)

Unseen vs. unseeable

From a historical point of view, there must have been a transition from "dark matter" meaning matter that we haven't seen (because it isn't very bright / our telescopes are not sufficiently sensitive) to matter that cannot be seen (in the electromagnetic sense) to matter that does not feel the strong force. If there are names or dates associated with these transitions could we add them to the article? Leegrc (talk) 11:20, 10 October 2014 (UTC)

Pseudoscience

It is suggested to place this article under the category pseudoscience.Wavyinfinity (talk) 14:51, 12 November 2014 (UTC)

Categories: