Revision as of 15:34, 11 July 2006 edit216.139.113.98 (talk) Reverted to last Tim Smith entry prior to vandalism← Previous edit | Revision as of 06:37, 12 July 2006 edit undoByrgenwulf (talk | contribs)1,234 edits Reverted...this was not vandalism, but an attempt to restore NPOV: who's biased around here?Next edit → | ||
Line 67: | Line 67: | ||
Guided by the Telic Principle, telic recursion seeks to maximize generalized utility through "telic ]" between past and future states. This potential for ] extends back to the very origin of reality, so that in effect, "the system brings itself into existence as a means of atemporal communication between its past and future whereby law and state, syntax and informational content, generate and refine each other across time to maximize total systemic self-utility." | Guided by the Telic Principle, telic recursion seeks to maximize generalized utility through "telic ]" between past and future states. This potential for ] extends back to the very origin of reality, so that in effect, "the system brings itself into existence as a means of atemporal communication between its past and future whereby law and state, syntax and informational content, generate and refine each other across time to maximize total systemic self-utility." | ||
The CTMU relates ], ], and ] through a process |
The CTMU relates ], ], and ] through a process called "conspansion"—material contraction ''qua'' spatial expansion. Because reality is self-contained, argues Langan, its external size is undefined, and it cannot expand: it has nothing to expand ''into''. Instead, it must stratify inwardly into a temporal sequence of states, each state topologically contained by, but descriptively containing, the one preceding it. In the resulting "conspansive spacetime", rather than reality expanding relative to its contents, its contents contract relative to it. The point, says Langan, is to preserve the valid relationships of conventional ] while changing their ''interpretations'' so as to resolve paradoxes of cosmology and physics. | ||
Conspansion alternates between two phases: a generative phase in which events produce new possibilities, and a selective phase in which possibilities collapse into new events. The alternation occurs at a fixed conspansion rate ''c'', understood as the rate at which reality creates itself and identified by Langan with the ] in a vacuum. Langan associates conspansive alternation with ], and the CTMU features a new ] called "Sum Over Futures". | Conspansion alternates between two phases: a generative phase in which events produce new possibilities, and a selective phase in which possibilities collapse into new events. The alternation occurs at a fixed conspansion rate ''c'', understood as the rate at which reality creates itself and identified by Langan with the ] in a vacuum. Langan associates conspansive alternation with ], and the CTMU features a new ] called "Sum Over Futures". | ||
Line 80: | Line 80: | ||
The third and highest level of self-cognition, the global level, is that of reality itself. This level possesses three formal properties of SCSPL: "syntactic self-distribution" (analogous to ]), "perfect autotransductive reflexivity" (analogous to ]), and "self-configuration up to freedom" (analogous to ]). Because these are theological attributes, Langan describes reality as "the mind of God". So, claims Langan, because the CTMU constitutes absolute truth—because it is founded on tautology and supported by logical and mathematical reasoning—it proves the existence of God. | The third and highest level of self-cognition, the global level, is that of reality itself. This level possesses three formal properties of SCSPL: "syntactic self-distribution" (analogous to ]), "perfect autotransductive reflexivity" (analogous to ]), and "self-configuration up to freedom" (analogous to ]). Because these are theological attributes, Langan describes reality as "the mind of God". So, claims Langan, because the CTMU constitutes absolute truth—because it is founded on tautology and supported by logical and mathematical reasoning—it proves the existence of God. | ||
==Criticism of the CTMU== | |||
The CTMU has occasionally generated controversy and attracted criticism. The usual complaints are that (1) the CTMU does not resemble ordinary science or explicitly adhere to scientific methodology; and (2) that the CTMU does not contain a sufficient amount of mathematics, or contains the wrong kind of mathematics, or uses mathematics in what some critics regard as a non-standard way. The defender of CTMU might argue that criticisms of the first type are irrelevant to reasoning about mathematics, philosophy, and the nature, methodology, and conventions of science itself. The critic may respond that this very defence represents a basic misunderstanding of the nature of the scientific method. CTMU's defenders may argue that criticisms of the second type, on the other hand, are merely opinionative, betray an overly narrow conception of mathematical reasoning, and are often accompanied by what seems to be a basic misunderstanding of their target. However, the reader is urged to read the sections on mathematical ], as well as the defining traits of ], and come to their own conclusions as to the viability of this theory. Moreover, as Langan has not gone through the usual process of ] (outside of ] ], which the ] does not accept as ]) his theory should be understood accordingly. | |||
==Further reading== | ==Further reading== | ||
Line 95: | Line 99: | ||
* official site | * official site | ||
* biography at ISCID | * biography at ISCID | ||
* for CTMU discussion, see 44-46, 57-59, 62-63, and 76 | |||
] | ] |
Revision as of 06:37, 12 July 2006
The Cognitive-Theoretic Model of the Universe or CTMU (pronounced "cat-mew") is a theory of the relationship between mind and reality. Created in the mid-1980s by blue-collar cosmologist Christopher Michael Langan, the CTMU rose to media attention in 1999, buoyed by interest in Langan's extraordinarily high IQ. Among Langan's claims for the theory are that it constitutes absolute truth, provides the logical framework of a Theory of Everything, and proves the existence of God.
History
Of limited means and largely self-taught, Langan created the CTMU in the mid-1980s while working as a nightclub bouncer on Long Island. His first paper on the theory, "The Resolution of Newcomb's Paradox", appeared in the December 1989–January 1990 issue of Noesis, the journal of the Noetic Society (now the Mega Society), a high-IQ society to which Langan belonged. Over the next decade Langan refined his work, continuing to publish and discuss it in Noesis.
For most of the 1990s, knowledge of the CTMU was limited to the Mega Society. Wider recognition began in 1999, when Esquire magazine published a profile of Langan and other members of the high-IQ community. Billing Langan as "the smartest man in America", the article's account of the weight-lifting bouncer and his Theory of Everything sparked a flurry of media interest. Articles and interviews appeared in Popular Science, The Times, The Sunday Telegraph, Newsday, Muscle & Fitness, and elsewhere. Langan was featured on 20/20 and First Person, and interviewed by the BBC.
By 2002 the CTMU had drawn the attention of ISCID, the International Society for Complexity, Information, and Design. Langan was made a fellow of the society and in September 2002 published in its online journal a 56-page paper, "The Cognitive-Theoretic Model of the Universe: A New Kind of Reality Theory". Langan's paper "Cheating the Millennium: The Mounting Explanatory Debts of Scientific Naturalism", relating the CTMU to existing theories of causality, appeared in the 2004 anthology Uncommon Dissent.
Langan has maintained an extensive online presence, debating the CTMU in forums across the Internet and posting papers on his Web site. He has also written an unpublished book about the CTMU called Design for a Universe.
Structure
Prominent among the tools of epistemology are the axiomatic method (associated with rationalism, deduction, and mathematics), and the scientific method (associated with empiricism, induction, and the physical sciences). The axiomatic method derives theorems from axioms, but alternative axioms can yield contradictory theorems (as with Euclidean and non-Euclidean geometry). The scientific method infers laws from observations, but future observations can break these laws (creating the problem of induction). Such methodological limitations have led some theorists to conclude that all knowledge is relative: to arbitrary axioms or to restricted observations.
The CTMU is an attempt to circumvent these limitations and achieve absolute knowledge. Langan writes:
"What I mean by 'absolute' is precisely this: (1) you can't relativize your way out of it by changing the context; (2) finding it in error equates to destroying your own basis for inference. These criteria are built into the theory from the ground up using some very effective, that is to say ironclad, techniques. Logically, there is no way out."
The CTMU is based on logical tautologies. In 2-valued logic, a tautology is a statement that is true under every assignment of "true" and "false" to the variables within it. For example, "A or not-A" (the law of the excluded middle) is a tautology because it is true regardless of whether A is true or false. Langan argues that all meaningful theories conform to 2-valued logic, and that because the axioms and theorems of 2-valued logic are tautological, tautologies "define the truth concept for all of the sciences. From mathematics and physics to biology and psychology, logical tautologies reign supreme and inviolable".
Langan further holds that logical tautologies constitute absolute knowledge in the sense of his criteria above. That is, where "changing the context" amounts to changing truth assignments to contextual variables, tautologies are true in every context. And where "your own basis for inference" includes 2-valued logic, logically disproving a tautology requires use of the tautology itself, destroying the inference. Accordingly Langan calls tautologies self-evident or "self-proving".
Tautologies are sometimes dismissed as "empty", "vacuous", and "uninformative" on the grounds that they tell us nothing about the world. Disagreeing, Langan adjoins to logic three metalogical principles (described below), themselves tautological, intended to relate logic to reality. The resulting theory (the CTMU) Langan calls a "supertautology": the reality-theoretic counterpart of a tautology. A supertautology is semantically tautological with respect to its universe; that is, "(a) the theory is intrinsically tautological, and (b) its tautological structure is modeled by its universe".
Unlike ordinary scientific theories, which rely on observation to establish their correspondence with reality, the CTMU is intended through its tautological construction to correspond with reality apodictically, in all possible worlds. In fact, claims Langan, "any other valid theory of reality will necessarily equate to the CTMU up to isomorphism; whatever it adds will come by way of specificity, not generality". Verification of the CTMU is made "largely rationalistic" by its tautological nature, so that "much of the theory has to be proven like a math theorem rather than confirmed on a lab bench".
In the CTMU, reality takes the form of an algebraic structure Langan calls a "Self-Configuring Self-Processing Language" or SCSPL. Much of the CTMU references, and indeed according to Langan essentially consists of, advanced mathematics, including category theory, model theory, computation theory, abstract algebra, and the logic of formalized theories. Langan's public writings are meant to be relatively accessible, and for that reason, he says, tend to avoid heavy use of symbolic notation in favor of informal characterization. Nonetheless, he claims, the CTMU is axiomatizable and formalizable, SCSPL is well-defined, and he "can reduce that entire 56 page paper to variables and functional, operational and relational symbols".
Axioms
Langan defines reality as "the perceptual aggregate including (1) all scientific observations that ever were and ever will be, and (2) the entire abstract and/or cognitive explanatory infrastructure of perception". That is, reality is defined on relevance to perception. Associated with this definition is a tautological containment principle Langan calls the Reality Principle: "reality contains all and only that which is real". That is, reality is self-contained.
The three metalogical principles used in the CTMU to relate logic to reality are the Metaphysical Autology Principle (associated with closure), the Mind Equals Reality Principle (associated with comprehensiveness), and the Multiplex Unity Principle (associated with consistency). They are tautological axioms and, according to Langan, necessarily modeled by reality as a condition of its existence. Langan notes that while they are independent, "the premise of axiomatic independence is itself a rather flimsy concept. These principles are actually rather strongly related in the sense that they can to some extent be inferred from each other in a reality-theoretic context".
The first principle is the Metaphysical Autology Principle or MAP, associated with closure. MAP says that reality is closed with respect to all internally relevant operations. In other words, everything essential to reality, including everything needed to describe it, is contained in reality itself. MAP is implied, Langan argues, by the definition of reality: were anything outside of reality relevant to it, it would be included by the definition and therefore inside reality.
The second principle is the Mind Equals Reality Principle or M=R, associated with comprehensiveness. M=R says that reality is comprehensive enough to describe itself. That is, reality conforms to the categories of the minds describing it from within. Whereas MAP gives reality what it needs to describe itself, M=R empowers it to actually do the describing. M=R follows, argues Langan, from the definition of reality. On one hand, mind itself is included in reality by perceptual relevance. On the other hand, mind acts as a filter: that which does not conform to mental categories is irrelevant to perception, and therefore not real. Langan here breaks with Kant, who posited a noumenal reality of "things-in-themselves", independent of the phenomenal reality we perceive. Discarding this "Kantian fallacy", Langan rejects noumena as oxymoronic "inconceivable concepts" and holds that phenomenal reality, as the only reality we can know, is the only reality there is. Accordingly, reality relates to our minds as a sort of "distributed solipsism".
The third principle is the Multiplex Unity Principle or MU, associated with consistency. MU says that reality is consistent by virtue of the mutually inclusive relationship between itself (unity) and its contents (multiplicity). That is, reality topologically includes its contents, while its contents descriptively include it. Reality is here analogous to the set of all sets; SCSPL extends set theory with the above two senses of inclusion so that sets, now "syntactic operators", can consistently contain themselves. The consistency of reality is implied, Langan argues, by the stability of perception: a single irresolvable paradox of the form "A = not-A" would destroy the information content of reality, making it impossible to perceive.
Origins
The question of why reality exists is sometimes taken to be unanswerable or meaningless: reality "just exists", it is held, and no further explanation can be given. Alternatively, it is sometimes held that reality exists because it was created by something outside of it. Langan opposes both views, arguing that were reality to lack an explanation, it would be acausal and could not sustain itself, whereas were something outside of reality to have created it, it would be relevant to reality and therefore inside reality by definition.
The CTMU treats the origin of reality in the context of freedom and constraint. Concepts are defined by constraints specifying their structure, and structure requires explanation. Consequently, Langan argues, the only concept not in need of structural explanation is the "terminal concept" with no constraints, and no structure to explain. In the CTMU, this "ontological groundstate" is called "Unbound Telesis" or UBT.
Because UBT is a medium of pure potential, everything is possible within it, and this means that what can exist, does exist. However, the requirements for existence are, asserts Langan, more stringent than is normally supposed. Because UBT is unstructured, the only possibilities which can actualize from it are those with sufficient internal structure to create and configure themselves. So in the CTMU, reality, rather than being uncaused or externally caused, is self-caused, and constrained by the structure it needs to create and configure itself, that of SCSPL.
The above reasoning, holds Langan, resolves the ex nihilo or "something-from-nothing" paradox. The paradox arises when "nothing" is taken to exclude not just "something", but the potential for "something". Because exclusion of potential is a constraint, "nothing" in this sense requires its own explanation, and cannot serve as an ontological groundstate. But when "nothing" is viewed as unconstrained potential or UBT, asserts Langan, reality arises inevitably from it.
Teleology
Reality, Langan argues, requires as a condition of its existence not merely logical consistency, but also "teleological consistency". To arise from UBT, reality needs a function to distinguish what it is from what it is not—to "select itself" for existence. This requirement, the "Telic Principle", generalizes the well-known anthropic principle: whereas the anthropic principle addresses the degree to which human existence constrains reality, the Telic Principle addresses the way in which reality tautologically constrains itself.
Because reality is self-contained, it serves as its own selection function. That is, the function, that which it selects, and the act of selection itself are identical; "existence is everywhere the choice to exist" and "reality triples as choice, chooser and chosen". Langan explores the logic of this arrangement: " large part of the CTMU is about what happens when functions, including choice, generative and causal functions, are looped so that input coincides with output coincides with functional syntax".
The requirement that reality serve as its own selection function gives it a reflexive form whose goal is to self-actualize. This "MU form" is the starting configuration of SCSPL grammar. With "existence and its amplification" as its sole imperative, reality selects its "future" by maximizing a parameter Langan calls "generalized utility". The CTMU is therefore a teleological theory in which the purpose of reality is to optimally self-actualize.
Because reality inherits distributive freedom from UBT, parts of reality can deviate from the teleology of reality as a whole. Unable therefore to maximize utility directly, reality instead maximizes potential utility, "setting things up" for maximum benefits should teleology be pursued. Langan takes generalized utility as the basis of a system of ethics, defining goodness as that which furthers teleology and extending the Golden Rule to fit the stratified structure of SCSPL.
Evolution
In the CTMU, reality evolves by "telic recursion", a metacausal generalization of ordinary recursion suited to pre-informational contexts. Telic recursion occurs in two stages, one primary and global, the other secondary and local. The primary stage creates the distributed laws, including the laws of physics, which reality obeys, while the secondary stage creates nondistributed, ad hoc supplements to those laws as reality transitions from state to state.
Guided by the Telic Principle, telic recursion seeks to maximize generalized utility through "telic feedback" between past and future states. This potential for reverse causality extends back to the very origin of reality, so that in effect, "the system brings itself into existence as a means of atemporal communication between its past and future whereby law and state, syntax and informational content, generate and refine each other across time to maximize total systemic self-utility."
The CTMU relates space, time, and matter through a process called "conspansion"—material contraction qua spatial expansion. Because reality is self-contained, argues Langan, its external size is undefined, and it cannot expand: it has nothing to expand into. Instead, it must stratify inwardly into a temporal sequence of states, each state topologically contained by, but descriptively containing, the one preceding it. In the resulting "conspansive spacetime", rather than reality expanding relative to its contents, its contents contract relative to it. The point, says Langan, is to preserve the valid relationships of conventional spacetime while changing their interpretations so as to resolve paradoxes of cosmology and physics.
Conspansion alternates between two phases: a generative phase in which events produce new possibilities, and a selective phase in which possibilities collapse into new events. The alternation occurs at a fixed conspansion rate c, understood as the rate at which reality creates itself and identified by Langan with the speed of light in a vacuum. Langan associates conspansive alternation with wave-particle duality, and the CTMU features a new interpretation of quantum mechanics called "Sum Over Futures".
Mind
The fundamental entity of SCSPL reality is the "syntactic operator", or unit of self-processing information. Because, argues Langan, cognition is just the specific form of information processing that occurs in a mind, information processing can be described as "generalized cognition" and self-processing information as "infocognition". So in the CTMU, reality is a dual-aspect monism consisting of one substance (infocognition) with two aspects (information and cognition); space is a configuration of syntactic operators, and time is the activity of these operators as they process themselves and each other.
The CTMU therefore supports a kind of panpsychism. Although every part of SCSPL has a cognitive aspect, the mental capabilities of a given subsystem depend on its structure. Langan distinguishes three "levels of self-cognition": subordinate, agentive, and global. The lowest of these levels, subordinate, encompasses low-complexity objects such as rocks. In the CTMU, rocks are cognitive in the generalized sense—their molecules interact, thereby processing information—but they do not possess independent volition or any intrinisic ability to optimize their environment.
The next level of self-cognition, which includes humans, is that of agents or "telors": observer-participants in the ongoing creation of reality. Telors possess independent volition and constructive, creative intelligence or "sentience". In the CTMU, the distributed laws of physics do not fully determine reality; they are supplemented by "meta-laws" created by telors as reality evolves. This ability of telors is constrained by factors including locality, interference, and the fact that it must occur within the probabilistic limits of the laws of physics.
The third and highest level of self-cognition, the global level, is that of reality itself. This level possesses three formal properties of SCSPL: "syntactic self-distribution" (analogous to omnipresence), "perfect autotransductive reflexivity" (analogous to omniscience), and "self-configuration up to freedom" (analogous to omnipotence). Because these are theological attributes, Langan describes reality as "the mind of God". So, claims Langan, because the CTMU constitutes absolute truth—because it is founded on tautology and supported by logical and mathematical reasoning—it proves the existence of God.
Criticism of the CTMU
The CTMU has occasionally generated controversy and attracted criticism. The usual complaints are that (1) the CTMU does not resemble ordinary science or explicitly adhere to scientific methodology; and (2) that the CTMU does not contain a sufficient amount of mathematics, or contains the wrong kind of mathematics, or uses mathematics in what some critics regard as a non-standard way. The defender of CTMU might argue that criticisms of the first type are irrelevant to reasoning about mathematics, philosophy, and the nature, methodology, and conventions of science itself. The critic may respond that this very defence represents a basic misunderstanding of the nature of the scientific method. CTMU's defenders may argue that criticisms of the second type, on the other hand, are merely opinionative, betray an overly narrow conception of mathematical reasoning, and are often accompanied by what seems to be a basic misunderstanding of their target. However, the reader is urged to read the sections on mathematical rigour, as well as the defining traits of pseudoscience, and come to their own conclusions as to the viability of this theory. Moreover, as Langan has not gone through the usual process of peer review (outside of intelligent design journals, which the scientific community does not accept as science) his theory should be understood accordingly.
Further reading
The most comprehensive paper on the CTMU is the 56-page "A New Kind of Reality Theory". Less formidable, but still technical, is the "Introduction to the CTMU". For laypeople seeking a gentler introduction, there are questions and answers.
References
- Langan, Christopher M. (2002). "The Cognitive-Theoretic Model of the Universe: A New Kind of Reality Theory". Progress in Complexity, Information, and Design 1.2–1.3.
- Langan, Christopher M. (2004). "Cheating the Millennium: The Mounting Explanatory Debts of Scientific Naturalism". In Uncommon Dissent: Intellectuals Who Find Darwinism Unconvincing, edited by William Dembski. ISI Books.
- McFadden, Cynthia. (December 9, 1999). "The Smart Guy". 20/20.
- Quain, John R. (October 14, 2001). "Wise Guy". Popular Science.
External links
- Cognitive-Theoretic Model of the Universe official site
- Christopher Langan biography at ISCID
- Back issues of Noesis for CTMU discussion, see 44-46, 57-59, 62-63, and 76