Misplaced Pages

Viscous fingering: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 07:19, 8 September 2014 editAshik (talk | contribs)70 edits doification← Previous edit Revision as of 05:59, 8 April 2015 edit undoTweisbach (talk | contribs)Extended confirmed users1,754 editsm Added dead link marker.Next edit →
Line 11: Line 11:
==References== ==References==
{{Reflist|2}} {{Reflist|2}}
* at Center for Nonlinear Dynamics *{{dead link}} at Center for Nonlinear Dynamics


*] and ]. The penetration of a fluid into a medium or hele-shaw cell containing a more viscous liquid. Proc. Soc. London, Ser A, 245:312-329, 1958. *] and ]. The penetration of a fluid into a medium or hele-shaw cell containing a more viscous liquid. Proc. Soc. London, Ser A, 245:312-329, 1958.

Revision as of 05:59, 8 April 2015

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Viscous fingering" – news · newspapers · books · scholar · JSTOR (July 2013) (Learn how and when to remove this message)

Viscous fingering is the formation of patterns in a morphologically unstable interface between two fluids in a porous medium or in a Hele-Shaw cell. It occurs when a less viscous fluid is injected displacing a more viscous one (in the inverse situation, with the more viscous displacing the other, the interface is stable and no patterns form). It can also occur driven by gravity (without injection) if the interface is horizontal separating two fluids of different densities, being the heavier one above the other. In the rectangular configuration the system evolves until a single finger (the Saffman–Taylor finger) forms. In the radial configuration the pattern grows forming fingers by successive tip-splitting.

The mathematical description of viscous fingering is the Darcy's law for the flow in the bulk of each fluid, and a boundary condition at the interface accounting for surface tension.

Most experimental research on viscous fingering has been performed on Hele-Shaw cells. The two most common set-ups are the channel configuration, in which the less viscous fluid is injected by an end of the channel, and the radial one, in which the less viscous fluid is injected by the center of the cell. Instabilities analogous to viscous fingering can also be self-generated in biological systems.

Simulations methods for viscous fingering problems include boundary integral methods, phase field models, etc.

References

  1. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1103/PhysRevLett.104.208101, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1103/PhysRevLett.104.208101 instead.
  • P. G. Saffman and G. Taylor. The penetration of a fluid into a medium or hele-shaw cell containing a more viscous liquid. Proc. Soc. London, Ser A, 245:312-329, 1958.
Category: