Revision as of 19:26, 17 February 2015 edit91.195.72.14 (talk) →General case: corrected formula← Previous edit | Revision as of 17:22, 21 July 2015 edit undo24.240.67.157 (talk) →Proof using eigendecomposition: correcting language: "positive" -> "positive semidefinite". a "positive" matrix is something else (as is "nonnegative").Next edit → | ||
Line 43: | Line 43: | ||
=== Proof using eigendecomposition === | === Proof using eigendecomposition === | ||
==== Proof of |
==== Proof of positive semidefiniteness ==== | ||
Let <math>M = \sum \mu_i m_i m_i^T</math> and <math>N = \sum \nu_i n_i n_i^T</math>. Then | Let <math>M = \sum \mu_i m_i m_i^T</math> and <math>N = \sum \nu_i n_i n_i^T</math>. Then | ||
: <math>M \circ N = \sum_{ij} \mu_i \nu_j (m_i m_i^T) \circ (n_j n_j^T) = \sum_{ij} \mu_i \nu_j (m_i \circ n_j) (m_i \circ n_j)^T</math> | : <math>M \circ N = \sum_{ij} \mu_i \nu_j (m_i m_i^T) \circ (n_j n_j^T) = \sum_{ij} \mu_i \nu_j (m_i \circ n_j) (m_i \circ n_j)^T</math> | ||
Each <math>(m_i \circ n_j) (m_i \circ n_j)^T</math> is positive (but, except in the 1-dimensional case, not positive definite, since they are ] 1 matrices) |
Each <math>(m_i \circ n_j) (m_i \circ n_j)^T</math> is positive semidefinite (but, except in the 1-dimensional case, not positive definite, since they are ] 1 matrices). Also, <math>\mu_i \nu_j > 0</math> thus the sum <math>M \circ N</math> is also positive semidefinite. | ||
==== |
==== Proof of definiteness ==== | ||
To show that the result is positive definite requires further proof. We shall show that for any vector <math>a \neq 0</math>, we have <math>a^T (M \circ N) a > 0</math>. Continuing as above, each <math>a^T (m_i \circ n_j) (m_i \circ n_j)^T a \ge 0</math>, so it remains to show that there exist <math>i</math> and <math>j</math> for which the inequality is strict. For this we observe that | To show that the result is positive definite requires further proof. We shall show that for any vector <math>a \neq 0</math>, we have <math>a^T (M \circ N) a > 0</math>. Continuing as above, each <math>a^T (m_i \circ n_j) (m_i \circ n_j)^T a \ge 0</math>, so it remains to show that there exist <math>i</math> and <math>j</math> for which the inequality is strict. For this we observe that |
Revision as of 17:22, 21 July 2015
In mathematics, particularly in linear algebra, the Schur product theorem states that the Hadamard product of two positive definite matrices is also a positive definite matrix. The result is named after Issai Schur (Schur 1911, p. 14, Theorem VII) (note that Schur signed as J. Schur in Journal für die reine und angewandte Mathematik.)
Proof
Proof using the trace formula
It is easy to show that for matrices and , the Hadamard product considered as a bilinear form acts on vectors as
where is the matrix trace and is the diagonal matrix having as diagonal entries the elements of .
Since and are positive definite, we can consider their square-roots and and write
Then, for , this is written as for and thus is positive. This shows that is a positive definite matrix.
Proof using Gaussian integration
Case of M = N
Let be an -dimensional centered Gaussian random variable with covariance . Then the covariance matrix of and is
Using Wick's theorem to develop we have
Since a covariance matrix is positive definite, this proves that the matrix with elements is a positive definite matrix.
General case
Let and be -dimensional centered Gaussian random variables with covariances , and independt from each other so that we have
- for any
Then the covariance matrix of and is
Using Wick's theorem to develop
and also using the independence of and , we have
Since a covariance matrix is positive definite, this proves that the matrix with elements is a positive definite matrix.
Proof using eigendecomposition
Proof of positive semidefiniteness
Let and . Then
Each is positive semidefinite (but, except in the 1-dimensional case, not positive definite, since they are rank 1 matrices). Also, thus the sum is also positive semidefinite.
Proof of definiteness
To show that the result is positive definite requires further proof. We shall show that for any vector , we have . Continuing as above, each , so it remains to show that there exist and for which the inequality is strict. For this we observe that
Since is positive definite, there is a for which is not 0 for all , and then, since is positive definite, there is an for which is not 0 for all . Then for this and we have . This completes the proof.
References
- Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1515/crll.1911.140.1, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1515/crll.1911.140.1
instead. - Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1007/b105056, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1007/b105056
instead., page 9, Ch. 0.6 Publication under J. Schur - Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1112/blms/15.2.97, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1112/blms/15.2.97
instead.
External links
- Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen at EUDML