Misplaced Pages

Straw-bale construction: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 19:08, 2 September 2015 editGaius Cornelius (talk | contribs)Administrators164,008 editsm Fix date.← Previous edit Revision as of 10:28, 18 October 2015 edit undoCyberbot II (talk | contribs)Bots, Pending changes reviewers469,527 edits Rescuing 2 sources, flagging 0 as dead, and archiving 20 sources. (Peachy 2.0 (alpha 8))Next edit →
Line 39: Line 39:
Typically "field bales" (bales created on farms with baling machines) have been used, but recently higher-density "precompressed" bales (or "straw-blocks") are increasing the loads that may be supported. Oryzatech out of Goleta, California has been developing rice straw compressed block.<ref>{{cite web |last=Wilson |first=Alex |title=Lego Blocks from Straw |publisher=Buildinggreen.com.esf.idm.oclc.org |date=1 December 2009 |url=http://www.buildinggreen.com.esf.idm.oclc.org/auth/article.cfm/2009/12/1/Lego-Blocks-from-Straw/}}</ref> Field bales might support around 900&nbsp;kg per linear meter of wall (600&nbsp;lb./ lin. ft.), but the high density bales bear up to 6000&nbsp;kg per linear meter of wall (4,000&nbsp;lb./lin.ft.), and more. The basic bale-building method is now increasingly being extended to bound modules of other oft-recycled materials, including tire-bales, cardboard, paper, plastic, and used carpeting. The technique has also been extended to bags containing "bales" of wood chips or ].<ref name=Steen /><ref name=Magwood /> Typically "field bales" (bales created on farms with baling machines) have been used, but recently higher-density "precompressed" bales (or "straw-blocks") are increasing the loads that may be supported. Oryzatech out of Goleta, California has been developing rice straw compressed block.<ref>{{cite web |last=Wilson |first=Alex |title=Lego Blocks from Straw |publisher=Buildinggreen.com.esf.idm.oclc.org |date=1 December 2009 |url=http://www.buildinggreen.com.esf.idm.oclc.org/auth/article.cfm/2009/12/1/Lego-Blocks-from-Straw/}}</ref> Field bales might support around 900&nbsp;kg per linear meter of wall (600&nbsp;lb./ lin. ft.), but the high density bales bear up to 6000&nbsp;kg per linear meter of wall (4,000&nbsp;lb./lin.ft.), and more. The basic bale-building method is now increasingly being extended to bound modules of other oft-recycled materials, including tire-bales, cardboard, paper, plastic, and used carpeting. The technique has also been extended to bags containing "bales" of wood chips or ].<ref name=Steen /><ref name=Magwood />


Straw bales have also been used in very energy efficient high performance buildings such as the S-House<ref>{{cite web|author=Hans-Peter Petek |url=http://www.s-house.at/presentations.htm |title=S-House |publisher=S-house.at |accessdate=2014-04-08}}</ref> in Austria which meets the Passivhaus energy standard. In South Africa, a five-star lodge made from 10,000 strawbales has housed luminaries such as Nelson Mandela and Tony Blair.<ref>{{cite web|url=http://inhabitat.com/five-star-didimala-lodge-is-the-world%E2%80%99s-largest-strawbale-building/ |title=Five Star Didimala Lodge Is The World’s Largest Strawbale Building! |publisher=Inhabitat |accessdate=2014-04-08}}</ref> In the Swiss Alps, in the little village of ], construction works have begun in October 2011 for the first hotel in Europe built entirely with straw bales.<ref>{{cite web|url=http://mayaguesthouse.wordpress.com/ |title=Blog about the first hotel built with straw bales |publisher=Mayaguesthouse.wordpress.com |accessdate=2014-04-08}}</ref> The Harrison Vault,<ref>{{dead link|date=April 2014}}</ref> in Joshua Tree, California, is engineered to withstand the high seismic loads in that area using only the assembly consisting of bales, lath and plaster.<ref>{{cite web|url=https://docs.google.com/a/tippingmar.com/viewer?a=v&pid=sites&srcid=dGlwcGluZ21hci5jb218dG0tcHVibGljLWRvY3VtZW50c3xneDo1OTU1YWQ2NWU1ODRjNDRj |title=Google Drive Viewer |publisher=Docs.google.com |accessdate=2014-04-08}}</ref> The technique was used successfully for strawbale housing in rural China.<ref name="google1">{{cite web|url=https://docs.google.com/a/tippingmar.com/viewer?a=v&pid=sites&srcid=dGlwcGluZ21hci5jb218dG0tcHVibGljLWRvY3VtZW50c3xneDozMTcyM2VlMTdlZDQ1MTQ |title=Google Drive Viewer |publisher=Docs.google.com |accessdate=2014-04-08}}</ref> Straw bale domes along the Syrio-African rift at Kibbutz Lotan have an interior geodesic frame of steel pipes.<ref></ref> Straw bales have also been used in very energy efficient high performance buildings such as the S-House<ref>{{cite web|author=Hans-Peter Petek |url=http://www.s-house.at/presentations.htm |title=S-House |publisher=S-house.at |accessdate=2014-04-08}}</ref> in Austria which meets the Passivhaus energy standard. In South Africa, a five-star lodge made from 10,000 strawbales has housed luminaries such as Nelson Mandela and Tony Blair.<ref>{{cite web|url=http://inhabitat.com/five-star-didimala-lodge-is-the-world%E2%80%99s-largest-strawbale-building/ |title=Five Star Didimala Lodge Is The World’s Largest Strawbale Building! |publisher=Inhabitat |accessdate=2014-04-08}}</ref> In the Swiss Alps, in the little village of ], construction works have begun in October 2011 for the first hotel in Europe built entirely with straw bales.<ref>{{cite web|url=http://mayaguesthouse.wordpress.com/ |title=Blog about the first hotel built with straw bales |publisher=Mayaguesthouse.wordpress.com |accessdate=2014-04-08}}</ref> The Harrison Vault,<ref> {{wayback|url=http://skillful-means.com/pages/details.php?pid=14&photonumber=1&showphoto=vault01.jpg |date=20110621161559 }}</ref> in Joshua Tree, California, is engineered to withstand the high seismic loads in that area using only the assembly consisting of bales, lath and plaster.<ref>{{cite web|url=https://docs.google.com/a/tippingmar.com/viewer?a=v&pid=sites&srcid=dGlwcGluZ21hci5jb218dG0tcHVibGljLWRvY3VtZW50c3xneDo1OTU1YWQ2NWU1ODRjNDRj |title=Google Drive Viewer |publisher=Docs.google.com |accessdate=2014-04-08}}</ref> The technique was used successfully for strawbale housing in rural China.<ref name="google1">{{cite web|url=https://docs.google.com/a/tippingmar.com/viewer?a=v&pid=sites&srcid=dGlwcGluZ21hci5jb218dG0tcHVibGljLWRvY3VtZW50c3xneDozMTcyM2VlMTdlZDQ1MTQ |title=Google Drive Viewer |publisher=Docs.google.com |accessdate=2014-04-08}}</ref> Straw bale domes along the Syrio-African rift at Kibbutz Lotan have an interior geodesic frame of steel pipes.<ref></ref>
Another method to reap the benefits of straw is to incorporate straw-bale walls into a pre-existing structure.<ref>Whitty, Cadmon. "I Wrapped My House in Straw: A Straw Bale Builder Turns an Ugly old, Energy-Eating House into a Cozy, Efficient Home with a Unique Straw Bale Retrofit Process." ''Natural Life'' Sept.-Oct. 2009 Print.</ref> Another method to reap the benefits of straw is to incorporate straw-bale walls into a pre-existing structure.<ref>Whitty, Cadmon. "I Wrapped My House in Straw: A Straw Bale Builder Turns an Ugly old, Energy-Eating House into a Cozy, Efficient Home with a Unique Straw Bale Retrofit Process." ''Natural Life'' Sept.-Oct. 2009 Print.</ref>


==Thermal Properties== ==Thermal Properties==
Compressed straw bales have a wide range of documented R-value. R-value is a measurement of a materials insulating quality, higher the number the more insulating. The reported R-value ranges from 17-55 (in American units) or 3-9.6 (in SI) depending on the study, differing wall designs could be responsible for wide range in R-value.<ref>{{cite web|url=http://www.buildinggreen.com/auth/article.cfm/1998/9/1/R-Value-of-Straw-Bales-Lower-Than-Previously-Reported/ |title=R-Value of Straw Bales Lower Than Previously Reported - EBN: 7:9 |publisher=Buildinggreen.com |accessdate=2014-04-08}}</ref><ref>{{dead link|date=April 2014}}</ref> Bale walls are typically coated with a thick layer of plaster, which provides a well-distributed ], active on a short-term (diurnal) cycle. The combination of insulation and mass provide an excellent platform for ] for winter and summer. Compressed straw bales have a wide range of documented R-value. R-value is a measurement of a materials insulating quality, higher the number the more insulating. The reported R-value ranges from 17-55 (in American units) or 3-9.6 (in SI) depending on the study, differing wall designs could be responsible for wide range in R-value.<ref>{{cite web|url=http://www.buildinggreen.com/auth/article.cfm/1998/9/1/R-Value-of-Straw-Bales-Lower-Than-Previously-Reported/ |title=R-Value of Straw Bales Lower Than Previously Reported - EBN: 7:9 |publisher=Buildinggreen.com |accessdate=2014-04-08}}</ref><ref> {{wayback|url=http://aceee.org/proceedings-paper/ss98/panel01/paper04 |date=20110710075736 }}</ref> Bale walls are typically coated with a thick layer of plaster, which provides a well-distributed ], active on a short-term (diurnal) cycle. The combination of insulation and mass provide an excellent platform for ] for winter and summer.


Compressed and plastered straw bale walls are also resistant to fire.<ref>{{cite web|url=http://www.ecobuildnetwork.org/projects/research/straw-bale-test-program/straw-bale-fire-test-video |title=Straw Bale Fire Test Video - Ecological Building Network |publisher=Ecobuildnetwork.org |accessdate=2014-04-08}}</ref> Compressed and plastered straw bale walls are also resistant to fire.<ref>{{cite web|url=http://www.ecobuildnetwork.org/projects/research/straw-bale-test-program/straw-bale-fire-test-video |title=Straw Bale Fire Test Video - Ecological Building Network |publisher=Ecobuildnetwork.org |accessdate=2014-04-08}}</ref>

Revision as of 10:28, 18 October 2015

An upscale use of straw bale insulation combined with energy-efficient passive features
Straw bale construction project in Willits, California
Example of SMS Straw Bale Home
Exterior view of straw bale library in Mattawa, Washington taken in 2008 (constructed 2002 by IronStraw Group)

Straw-bale construction is a building method that uses bales of straw (commonly wheat, rice, rye and oats straw) as structural elements, building insulation, or both. This construction method is commonly used in natural building or "brown" construction projects. Research has shown that straw-bale construction is a sustainable method for building, from the standpoint of both materials and energy needed for heating and cooling.

Advantages of straw-bale construction over conventional building systems include the renewable nature of straw, cost, easy availability, naturally fire-retardant and high insulation value. Disadvantages include susceptibility to rot, difficulty of obtaining insurance coverage, and high space requirements for the straw itself. Research has been done using moisture probes placed within the straw wall in which 7 of 8 locations had moisture contents of less than 20%. This is a moisture level that does not aid in the breakdown of the straw. However, proper construction of the straw-bale wall is important in keeping moisture levels down, just as in the construction of any type of building.

History

Straw houses have been built on the African plains since the Paleolithic Era. Straw bales were used in construction 400 years ago in Germany; and straw-thatched roofs have long been used in northern Europe and Asia. In the New World, teepees were insulated in winter with loose straw between the inner lining and outer cover.

One-story building with peaked roof, small steeple
Pilgrim Holiness Church in Arthur, Nebraska

Straw-bale construction was greatly facilitated by the mechanical hay baler, which was invented in the 1850s and was widespread by the 1890s. It proved particularly useful in the Nebraska Sandhills. Pioneers seeking land under the 1862 Homestead Act and the 1904 Kinkaid Act found a dearth of trees over much of Nebraska. In many parts of the state, the soil was suitable for dugouts and sod houses. However, in the Sandhills, the soil generally made poor construction sod; in the few places where suitable sod could be found, it was more valuable for agriculture than as a building material. Straw is a large "waste" product from the agricultural industry, which should be fully utilized as a sustainable building material.

The first documented use of hay bales in construction in Nebraska was a schoolhouse built in 1896 or 1897. Unfenced and unprotected by stucco or plaster, it was reported in 1902 as having been eaten by cows. To combat this, builders began plastering their bale structures; if cement or lime stucco was unavailable, locally obtained "gumbo mud" was employed. Between 1896 and 1945, an estimated 70 straw-bale buildings, including houses, farm buildings, churches, schools, offices, and grocery stores had been built in the Sandhills. In 1990, nine surviving bale buildings were reported in Arthur and Logan Counties, including the 1928 Pilgrim Holiness Church in the village of Arthur, which is listed in the National Register of Historic Places.

Since the 1990s straw-bale construction has been substantially revived, particularly in North America, Europe, and Australia. However, Straw-bale construction does encounter issues regarding building codes depending on the location building.

Method

Straw bale building typically consists of stacking rows of bales (often in running-bond) on a raised footing or foundation, with a moisture barrier or capillary break between the bales and their supporting platform. There are two types of straw-bales commonly used, those bound together with two strings and those with three. The three string bale is the larger in all three dimensions. Bale walls can be tied together with pins of bamboo, rebar, or wood (internal to the bales or on their faces), or with surface wire meshes, and then stuccoed or plastered, either with a cement-based mix, lime-based formulation, or earth/clay render. The bales may actually provide the structural support for the building ("load-bearing" or "Nebraska-style" technique), as was the case in the original examples from the late 19th century. The plastered bale assembly also can be designed to provide lateral and shear support for wind and seismic loads.

This straw bale house plastered with loam is located in Swalmen, in the southeastern Netherlands

Alternatively, bale buildings can have a structural frame of other materials, usually lumber or timber-frame, with bales simply serving as insulation and plaster substrate, ("infill" or "non-loadbearing" technique), which is most often required in northern regions and/or in wet climates. In northern regions, the potential snow-loading can exceed the strength of the bale walls. In wet climates, the imperative for applying a vapor-permeable finish precludes the use of cement-based stucco commonly used on load-bearing bale walls. Additionally, the inclusion of a skeletal framework of wood or metal allows the erection of a roof prior to raising the bales, which can protect the bale wall during construction, when it is the most vulnerable to water damage in all but the most dependably arid climates. A combination of framing and load-bearing techniques may also be employed, referred to as "hybrid" straw bale construction.

Straw bale construction

Straw bales can also be used as part of a Spar and Membrane Structure (SMS) wall system in which lightly reinforced 5 - 8 cm (2 - 3") gunite or shotcrete skins are interconnected with extended "X" shaped light rebar in the head joints of the bales. In this wall system the concrete skins provide structure, seismic reinforcing, and fireproofing, while the bales are used as leave-in formwork and insulation.

The University of Bath has completed a research programme which used ‘ModCell’ panels - pre-fabricated panels consisting of a wooden structural frame infilled with straw bales and rendered with a breathable lime-based system - to build 'BaleHaus', a straw bale construction on the university's campus. Monitoring work of the structure carried out by architectural researchers at the university has found that as well as reducing the environmental footprint, the construction offers other benefits, including healthier living through higher levels of thermal insulation and regulation of humidity levels. The group has published a number of research papers on its findings.

Typically "field bales" (bales created on farms with baling machines) have been used, but recently higher-density "precompressed" bales (or "straw-blocks") are increasing the loads that may be supported. Oryzatech out of Goleta, California has been developing rice straw compressed block. Field bales might support around 900 kg per linear meter of wall (600 lb./ lin. ft.), but the high density bales bear up to 6000 kg per linear meter of wall (4,000 lb./lin.ft.), and more. The basic bale-building method is now increasingly being extended to bound modules of other oft-recycled materials, including tire-bales, cardboard, paper, plastic, and used carpeting. The technique has also been extended to bags containing "bales" of wood chips or rice hulls.

Straw bales have also been used in very energy efficient high performance buildings such as the S-House in Austria which meets the Passivhaus energy standard. In South Africa, a five-star lodge made from 10,000 strawbales has housed luminaries such as Nelson Mandela and Tony Blair. In the Swiss Alps, in the little village of Nax Mont-Noble, construction works have begun in October 2011 for the first hotel in Europe built entirely with straw bales. The Harrison Vault, in Joshua Tree, California, is engineered to withstand the high seismic loads in that area using only the assembly consisting of bales, lath and plaster. The technique was used successfully for strawbale housing in rural China. Straw bale domes along the Syrio-African rift at Kibbutz Lotan have an interior geodesic frame of steel pipes. Another method to reap the benefits of straw is to incorporate straw-bale walls into a pre-existing structure.

Thermal Properties

Compressed straw bales have a wide range of documented R-value. R-value is a measurement of a materials insulating quality, higher the number the more insulating. The reported R-value ranges from 17-55 (in American units) or 3-9.6 (in SI) depending on the study, differing wall designs could be responsible for wide range in R-value. Bale walls are typically coated with a thick layer of plaster, which provides a well-distributed thermal mass, active on a short-term (diurnal) cycle. The combination of insulation and mass provide an excellent platform for passive solar building design for winter and summer.

Compressed and plastered straw bale walls are also resistant to fire.

See also

Interior view of straw bale library

References

  1. "S-House writeup" (PDF). Retrieved 2014-04-08.
  2. Milutiene, Edita, et al. "increase in Buildings Sustainability Using Renewable materials and Energy." Clean Technologies & Environmental policy 14.6 (2012): 1075-84.Print.
  3. Canada Mortgage and Housing Corporation. "Energy Use In Straw Bale Houses". Retrieved on 4 September 2008.
  4. ^ Steen, Steen & Bainbridge (1994). The Straw Bale House. Chelsey Green Publishing Co. ISBN 0-930031-71-7.
  5. ^ Magwood & Mark (2000). Straw Bale Building. New Society Publishers. ISBN 0-86571-403-7.
  6. Webster, Ben (2010-05-20). "Huff as hard as you like - you can't blow a straw house down". London: The Times, May 20, 2010.
  7. Goodhew, Steve, Richard Griffiths, and Tom Woolley. "An Investigation of the Moisture Content in the Walls of a Straw-Bale Building." Building and Environment39.12 (2004): 1443-51. Print.
  8. ^ Marks, Leanne R. (2005). "Straw Bale as a Viable, Cost Effective, and Sustainable Building Material for use in Southeast Ohio". Master's thesis, Ohio University. Retrieved 2010-08-10.
  9. Nebraska Historic Buildings Survey: Custer County Nebraska State Historical Society. Retrieved 2010-08-29.
  10. ^ Spencer, Janet Jeffries and D. Murphy (1979). "National Register of Historic Places Inventory–Nomination Form: Pilgrim Holiness Church" Nebraska State Historical Society. Retrieved 2010-08-10.
  11. ^ Hammett, Jerilou and Kingsley (1998). "The Strawbale Search". DESIGNER/builder magazine, August 1998. Article reproduced at "The Last Straw" website. Retrieved 2010-08-10.
  12. Smil, Vaclav. "Crop Residues: Agriculture's Largest Harvest." Bioscience 49.4 (1999): 299-308. Print.
  13. Kay, John, David Anthone, Robert Kay, and Christina Hugly (1990). "Nebraska Historic Buildings Survey, Reconnaissance Survey Final Report of Arthur County, Nebraska." Nebraska State Historical Society. Retrieved 2010-08-29.
  14. Hollis, Murray (2005). Practical Straw Bale Building. Collingwood: Landlinks Press. ISBN 0-643-06977-1.
  15. Kathryn Henderson Science, Technology, & Human Values , Vol. 31, No. 3, Ethics and Engineering Design (May, 2006), pp. 261-288
  16. Hammer, Martin (1 February 2006). "Ten years Later: Strawbale in the Building Codes". Buildinggreen.com.esf.idm.oclc.org. Retrieved 4 October 2013.
  17. Jones, Barbara (2002). Building with Straw Bales: A Practical Guide for UK and Ireland (2011 ed.). Dartington, Totnes, Devon TQ9 6EB: Green Books. p. 26. ISBN 978-1-900322-51-5.{{cite book}}: CS1 maint: location (link)
  18. Keefe, Chris. "Straw Bale Design - Choosing the Right Size Straw Bales". Strawbale.com.
  19. Malin, Nadav (1 May 1993). "Building With Straw Bale". .buildinggreen.com.esf.idm.oclc.org. Retrieved 5 October 2013.
  20. Myhrman, Matts; S.O. MacDonald (1994). Build it with Bales. Out on Bale. ISBN 0-9642821-1-9.
  21. Black, Gary, and Mannik, Henri, "Spar and Membrane Structure" The Last Straw journal, #17, Winter 1997
  22. "BaleHaus: innovation in straw bale building". The University of Bath. Retrieved 8 July 2014.
  23. Wilson, Alex (1 December 2009). "Lego Blocks from Straw". Buildinggreen.com.esf.idm.oclc.org.
  24. Hans-Peter Petek. "S-House". S-house.at. Retrieved 2014-04-08.
  25. "Five Star Didimala Lodge Is The World's Largest Strawbale Building!". Inhabitat. Retrieved 2014-04-08.
  26. "Blog about the first hotel built with straw bales". Mayaguesthouse.wordpress.com. Retrieved 2014-04-08.
  27. Archived 2011-06-21 at the Wayback Machine
  28. "Google Drive Viewer". Docs.google.com. Retrieved 2014-04-08.
  29. ^ "Google Drive Viewer". Docs.google.com. Retrieved 2014-04-08.
  30. EcoCampus, Center for Creative Ecology, Kibbutz Lotan
  31. Whitty, Cadmon. "I Wrapped My House in Straw: A Straw Bale Builder Turns an Ugly old, Energy-Eating House into a Cozy, Efficient Home with a Unique Straw Bale Retrofit Process." Natural Life Sept.-Oct. 2009 Print.
  32. "R-Value of Straw Bales Lower Than Previously Reported - EBN: 7:9". Buildinggreen.com. Retrieved 2014-04-08.
  33. Archived 2011-07-10 at the Wayback Machine
  34. "Straw Bale Fire Test Video - Ecological Building Network". Ecobuildnetwork.org. Retrieved 2014-04-08.

Further reading

  • Corum, Nathaniel (2005). Building a Straw Bale House: The Red Feather construction handbook. New York: Princeton Architectural Press. ISBN 978-1-56898-514-5.
  • King, Bruce (2006). Design of Straw Bale Buildings: The State of the Art. San Rafael, CA: Green Building Press. ISBN 978-0-9764911-1-8.
  • Magwood, Chris; Mack, Peter; Therrien, Tina (2005). More Straw Bale Building: A complete guide to designing and building with straw. Gabriola Island, B.C.: New Society Publishers. ISBN 978-0-86571-518-9.
  • Steen, Athena Swentzell; et al. (1994). The Straw Bale House. White River Junction, Vt.: Chelsea Green Publ. Co. ISBN 978-0-930031-71-8.

External links

Categories: