Misplaced Pages

Andrew Huberman: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 22:33, 8 August 2016 view sourceJamesbrianbounds (talk | contribs)44 edits Editorial Board Member of:← Previous edit Revision as of 17:34, 16 August 2016 view source Jamesbrianbounds (talk | contribs)44 editsmNo edit summaryTag: Visual editNext edit →
Line 2: Line 2:
= Andrew D. Huberman, Ph.D.<!-- EDIT BELOW THIS LINE --> = = Andrew D. Huberman, Ph.D.<!-- EDIT BELOW THIS LINE --> =


Andrew D. Huberman (born in 1975 in ]) is an American neuroscientist and tenured ] in the Department of ] at the ]. He has made numerous important contributions to the fields of brain development, brain plasticity, and neural regeneration and repair. A large amount of that work focused on the visual system, including the mechanisms that control light-mediated activation of the circadian and autonomic arousal centers in the brain, as well as the brain control over conscious vision or ].
RGCs are incredibly important ]: if they fail to properly connect to and communicate with the brain, serious visual defects can occur. If RGCs degenerate, as they do in diseases such as ], patients go blind, even if the rest of the eye and brain are healthy and normal. Thus, understanding how RGCs wire up and transmit visual information to the brain and how to repair damaged RGC connections is extremely important for basic science and medicine.<br />


Huberman was awarded the McKnight Foundation Neuroscience Scholar Award (2013), and a Biomedical Scholar Award from the Pew Charitable Trusts. He is the recipient of the 2017 ARVO Cogan Award for making major contributions to the fields of vision science and efforts to regenerate the visual system and cure blindness.
Our lab incorporates a wide variety of techniques and approaches to understanding visual circuits including ], ], ], ], ], and ]. Each person in the lab works on a different aspect of visual circuit function, development or disease. We are a highly interactive and collaborative group: we actively exchange technologies and ideas with one another, with other labs at UCSD, and with labs around the US and abroad.<br />

From 1998-2000, Huberman worked in the laboratory of Irving Zucker and with ], at ], as part of a team that defined the relationship between early ] exposure and finger-length ratios<ref>{{Cite journal|last=Williams|first=T. J.|last2=Pepitone|first2=M. E.|last3=Christensen|first3=S. E.|last4=Cooke|first4=B. M.|last5=Huberman|first5=A. D.|last6=Breedlove|first6=N. J.|last7=Breedlove|first7=T. J.|last8=Jordan|first8=C. L.|last9=Breedlove|first9=S. M.|date=2000-03-30|title=Finger-length ratios and sexual orientation|url=https://www.ncbi.nlm.nih.gov/pubmed/10761903|journal=Nature|volume=404|issue=6777|pages=455–456|doi=10.1038/35006555|issn=0028-0836|pmid=10761903}}</ref>, and he performed the first experiments defining the structure of ] visual pathways that set the ] in the ]<ref>{{Cite journal|last=Muscat|first=Louise|last2=Huberman|first2=Andrew D.|last3=Jordan|first3=Cynthia L.|last4=Morin|first4=Lawrence P.|date=2003-11-24|title=Crossed and uncrossed retinal projections to the hamster circadian system|url=http://onlinelibrary.wiley.com/doi/10.1002/cne.10894/abstract|journal=The Journal of Comparative Neurology|language=en|volume=466|issue=4|pages=513–524|doi=10.1002/cne.10894|issn=1096-9861}}</ref>. From 2000-2004, working as a Ph.D. student working in the laboratory of Barbara Chapman at the Center for Neuroscience at the University of California, Davis, he discovered that neural activity and axon guidance molecules work in concert to ensure proper wiring of binocular maps in the brain<ref>{{Cite journal|last=Huberman|first=Andrew D.|last2=Feller|first2=Marla B.|last3=Chapman|first3=Barbara|date=2008-01-01|title=Mechanisms Underlying Development of Visual Maps and Receptive Fields|url=http://dx.doi.org/10.1146/annurev.neuro.31.060407.125533|journal=Annual Review of Neuroscience|volume=31|issue=1|pages=479–509|doi=10.1146/annurev.neuro.31.060407.125533|pmc=2655105|pmid=18558864}}</ref><ref>{{Cite journal|last=Huberman|first=Andrew D|last2=Murray|first2=Karl D|last3=Warland|first3=David K|last4=Feldheim|first4=David A|last5=Chapman|first5=Barbara|title=Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus|url=http://www.nature.com/doifinder/10.1038/nn1505|journal=Nature Neuroscience|volume=8|issue=8|pages=1013–1021|doi=10.1038/nn1505|pmc=2652399|pmid=16025110}}</ref><ref>{{Cite journal|last=Huberman|first=Andrew D.|last2=Speer|first2=Colenso M.|last3=Chapman|first3=Barbara|date=2006-10-19|title=Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in v1|url=https://www.ncbi.nlm.nih.gov/pubmed/17046688|journal=Neuron|volume=52|issue=2|pages=247–254|doi=10.1016/j.neuron.2006.07.028|issn=0896-6273|pmc=2647846|pmid=17046688}}</ref>. As a Helen Hay Whitney Postdoctoral Fellow researcher in the laboratory of Ben A. Barres from 2005-2010, and as an Assistant Professor of Neurobiology and Neuroscience at ] from 2011-2015, Huberman pioneered the use of genetic tools for the study of the visual system function, development and disease <ref>{{Cite journal|last=Huberman|first=Andrew D.|last2=Manu|first2=Mihai|last3=Koch|first3=Selina M.|last4=Susman|first4=Michael W.|last5=Lutz|first5=Amanda Brosius|last6=Ullian|first6=Erik M.|last7=Baccus|first7=Stephen A.|last8=Barres|first8=Ben A.|date=2008-08-14|title=Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells|url=https://www.ncbi.nlm.nih.gov/pubmed/18701068|journal=Neuron|volume=59|issue=3|pages=425–438|doi=10.1016/j.neuron.2008.07.018|issn=1097-4199|pmid=18701068}}</ref><ref>{{Cite journal|last=Huberman|first=Andrew D.|last2=Wei|first2=Wei|last3=Elstrott|first3=Justin|last4=Stafford|first4=Ben K.|last5=Feller|first5=Marla B.|last6=Barres|first6=Ben A.|date=2009-05-14|title=Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion|url=https://www.ncbi.nlm.nih.gov/pubmed/19447089|journal=Neuron|volume=62|issue=3|pages=327–334|doi=10.1016/j.neuron.2009.04.014|issn=1097-4199|pmc=3140054|pmid=19447089}}</ref><ref>{{Cite journal|last=Dhande|first=Onkar S.|last2=Estevez|first2=Maureen E.|last3=Quattrochi|first3=Lauren E.|last4=El-Danaf|first4=Rana N.|last5=Nguyen|first5=Phong L.|last6=Berson|first6=David M.|last7=Huberman|first7=Andrew D.|date=2013-11-06|title=Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization|url=https://www.ncbi.nlm.nih.gov/pubmed/24198370|journal=The Journal of Neuroscience: The Official Journal of the Society for Neuroscience|volume=33|issue=45|pages=17797–17813|doi=10.1523/JNEUROSCI.2778-13.2013|issn=1529-2401|pmc=3818553|pmid=24198370}}</ref><ref>{{Cite journal|last=Osterhout|first=Jessica A.|last2=Josten|first2=Nicko|last3=Yamada|first3=Jena|last4=Pan|first4=Feng|last5=Wu|first5=Shaw-wen|last6=Nguyen|first6=Phong L.|last7=Panagiotakos|first7=Georgia|last8=Inoue|first8=Yukiko U.|last9=Egusa|first9=Saki F.|date=2011-08-25|title=Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit|url=https://www.ncbi.nlm.nih.gov/pubmed/21867880|journal=Neuron|volume=71|issue=4|pages=632–639|doi=10.1016/j.neuron.2011.07.006|issn=1097-4199|pmc=3513360|pmid=21867880}}</ref><ref>{{Cite journal|last=Cruz-Martín|first=Alberto|last2=El-Danaf|first2=Rana N.|last3=Osakada|first3=Fumitaka|last4=Sriram|first4=Balaji|last5=Dhande|first5=Onkar S.|last6=Nguyen|first6=Phong L.|last7=Callaway|first7=Edward M.|last8=Ghosh|first8=Anirvan|last9=Huberman|first9=Andrew D.|date=2014-03-20|title=A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex|url=https://www.ncbi.nlm.nih.gov/pubmed/24572358|journal=Nature|volume=507|issue=7492|pages=358–361|doi=10.1038/nature12989|issn=1476-4687|pmc=4143386|pmid=24572358}}</ref><ref>{{Cite journal|last=Osterhout|first=Jessica A.|last2=Stafford|first2=Benjamin K.|last3=Nguyen|first3=Phong L.|last4=Yoshihara|first4=Yoshihiro|last5=Huberman|first5=Andrew D.|date=2015-05-20|title=Contactin-4 mediates axon-target specificity and functional development of the accessory optic system|url=https://www.ncbi.nlm.nih.gov/pubmed/25959733|journal=Neuron|volume=86|issue=4|pages=985–999|doi=10.1016/j.neuron.2015.04.005|issn=1097-4199|pmc=4706364|pmid=25959733}}</ref>. Among the Huberman Lab’s discoveries was the finding that specific types of retinal neurons degenerate early in Glaucoma<ref>{{Cite journal|last=El-Danaf|first=Rana N.|last2=Huberman|first2=Andrew D.|date=2015-02-11|title=Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types|url=https://www.ncbi.nlm.nih.gov/pubmed/25673829|journal=The Journal of Neuroscience: The Official Journal of the Society for Neuroscience|volume=35|issue=6|pages=2329–2343|doi=10.1523/JNEUROSCI.1419-14.2015|issn=1529-2401|pmid=25673829}}</ref>ommon blinding disease that depletes sight in > 70 million people worldwide and for which there is currently no cure.

After moving to Stanford in 2016, Huberman discovered and published<ref>{{Cite journal|last=Lim|first=Jung-Hwan A|last2=Stafford|first2=Benjamin K|last3=Nguyen|first3=Phong L|last4=Lien|first4=Brian V|last5=Wang|first5=Chen|last6=Zukor|first6=Katherine|last7=He|first7=Zhigang|last8=Huberman|first8=Andrew D|title=Neural activity promotes long-distance, target-specific regeneration of adult retinal axons|url=http://www.nature.com/doifinder/10.1038/nn.4340|journal=Nature Neuroscience|volume=19|issue=8|pages=1073–1084|doi=10.1038/nn.4340}}</ref> the use of non-invasive methods such as visual stimulation can enhance regeneration of damaged retinal neurons, leading to partial recovery from blindness, especially when the stimulation is paired with specific forms of gene therapy. The work was covered extensively in the popular press, including TIME Magazine and Scientific American and is part of the National Eye Institute’s Audacious Goals Initiative to restore vision to the blind. The Huberman Lab is now extending those findings and those of related studies on the use of custom-designed electrical stimulation to re-wire the damaged or traumatized nervous system of humans, through the use of virtual reality technology.  <br />
== Honors and Awards: == == Honors and Awards: ==
McKnight Foundation Scholar<ref>{{Cite web|url=https://biology.ucsd.edu/news/article_052813.html|title=Andrew Huberman named 2013 McKnight Scholar|website=biology.ucsd.edu|access-date=2016-08-08}}</ref> McKnight Foundation Scholar<ref>{{Cite web|url=https://biology.ucsd.edu/news/article_052813.html|title=Andrew Huberman named 2013 McKnight Scholar|website=biology.ucsd.edu|access-date=2016-08-08}}</ref>

Revision as of 17:34, 16 August 2016

This sandbox is in the article namespace. Either move this page into your userspace, or remove the {{User sandbox}} template.

Andrew D. Huberman, Ph.D.

Andrew D. Huberman (born in 1975 in Palo Alto, California) is an American neuroscientist and tenured Professor in the Department of Neurobiology at the Stanford University School of Medicine. He has made numerous important contributions to the fields of brain development, brain plasticity, and neural regeneration and repair. A large amount of that work focused on the visual system, including the mechanisms that control light-mediated activation of the circadian and autonomic arousal centers in the brain, as well as the brain control over conscious vision or sight.

Huberman was awarded the McKnight Foundation Neuroscience Scholar Award (2013), and a Biomedical Scholar Award from the Pew Charitable Trusts. He is the recipient of the 2017 ARVO Cogan Award for making major contributions to the fields of vision science and efforts to regenerate the visual system and cure blindness.

From 1998-2000, Huberman worked in the laboratory of Irving Zucker and with Marc Breedlove, at University of California, Berkeley, as part of a team that defined the relationship between early androgen exposure and finger-length ratios, and he performed the first experiments defining the structure of binocular visual pathways that set the circadian clock in the hypothalamus. From 2000-2004, working as a Ph.D. student working in the laboratory of Barbara Chapman at the Center for Neuroscience at the University of California, Davis, he discovered that neural activity and axon guidance molecules work in concert to ensure proper wiring of binocular maps in the brain. As a Helen Hay Whitney Postdoctoral Fellow researcher in the laboratory of Ben A. Barres from 2005-2010, and as an Assistant Professor of Neurobiology and Neuroscience at University of California, San Diego from 2011-2015, Huberman pioneered the use of genetic tools for the study of the visual system function, development and disease . Among the Huberman Lab’s discoveries was the finding that specific types of retinal neurons degenerate early in Glaucomaommon blinding disease that depletes sight in > 70 million people worldwide and for which there is currently no cure.

After moving to Stanford in 2016, Huberman discovered and published the use of non-invasive methods such as visual stimulation can enhance regeneration of damaged retinal neurons, leading to partial recovery from blindness, especially when the stimulation is paired with specific forms of gene therapy. The work was covered extensively in the popular press, including TIME Magazine and Scientific American and is part of the National Eye Institute’s Audacious Goals Initiative to restore vision to the blind. The Huberman Lab is now extending those findings and those of related studies on the use of custom-designed electrical stimulation to re-wire the damaged or traumatized nervous system of humans, through the use of virtual reality technology.  

Honors and Awards:

McKnight Foundation Scholar

Pew Biomedical Scholar

Glaucoma Research Foundation Catalyst for a Cure Team Member

Editorial Board Member

The Journal of Neuroscience (Official Journal of the Society for Neuroscience)

Current Biology (Cell Press/Elsevier)

The Journal of Comparative Neurology (Wiley)

Current Opinion in Neurobiology (Elsevier)

Cell Reports (Cell Press/Elsevier)

References

  1. Williams, T. J.; Pepitone, M. E.; Christensen, S. E.; Cooke, B. M.; Huberman, A. D.; Breedlove, N. J.; Breedlove, T. J.; Jordan, C. L.; Breedlove, S. M. (2000-03-30). "Finger-length ratios and sexual orientation". Nature. 404 (6777): 455–456. doi:10.1038/35006555. ISSN 0028-0836. PMID 10761903.
  2. Muscat, Louise; Huberman, Andrew D.; Jordan, Cynthia L.; Morin, Lawrence P. (2003-11-24). "Crossed and uncrossed retinal projections to the hamster circadian system". The Journal of Comparative Neurology. 466 (4): 513–524. doi:10.1002/cne.10894. ISSN 1096-9861.
  3. Huberman, Andrew D.; Feller, Marla B.; Chapman, Barbara (2008-01-01). "Mechanisms Underlying Development of Visual Maps and Receptive Fields". Annual Review of Neuroscience. 31 (1): 479–509. doi:10.1146/annurev.neuro.31.060407.125533. PMC 2655105. PMID 18558864.
  4. Huberman, Andrew D; Murray, Karl D; Warland, David K; Feldheim, David A; Chapman, Barbara. "Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus". Nature Neuroscience. 8 (8): 1013–1021. doi:10.1038/nn1505. PMC 2652399. PMID 16025110.
  5. Huberman, Andrew D.; Speer, Colenso M.; Chapman, Barbara (2006-10-19). "Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in v1". Neuron. 52 (2): 247–254. doi:10.1016/j.neuron.2006.07.028. ISSN 0896-6273. PMC 2647846. PMID 17046688.
  6. Huberman, Andrew D.; Manu, Mihai; Koch, Selina M.; Susman, Michael W.; Lutz, Amanda Brosius; Ullian, Erik M.; Baccus, Stephen A.; Barres, Ben A. (2008-08-14). "Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells". Neuron. 59 (3): 425–438. doi:10.1016/j.neuron.2008.07.018. ISSN 1097-4199. PMID 18701068.
  7. Huberman, Andrew D.; Wei, Wei; Elstrott, Justin; Stafford, Ben K.; Feller, Marla B.; Barres, Ben A. (2009-05-14). "Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion". Neuron. 62 (3): 327–334. doi:10.1016/j.neuron.2009.04.014. ISSN 1097-4199. PMC 3140054. PMID 19447089.
  8. Dhande, Onkar S.; Estevez, Maureen E.; Quattrochi, Lauren E.; El-Danaf, Rana N.; Nguyen, Phong L.; Berson, David M.; Huberman, Andrew D. (2013-11-06). "Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization". The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 33 (45): 17797–17813. doi:10.1523/JNEUROSCI.2778-13.2013. ISSN 1529-2401. PMC 3818553. PMID 24198370.
  9. Osterhout, Jessica A.; Josten, Nicko; Yamada, Jena; Pan, Feng; Wu, Shaw-wen; Nguyen, Phong L.; Panagiotakos, Georgia; Inoue, Yukiko U.; Egusa, Saki F. (2011-08-25). "Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit". Neuron. 71 (4): 632–639. doi:10.1016/j.neuron.2011.07.006. ISSN 1097-4199. PMC 3513360. PMID 21867880.
  10. Cruz-Martín, Alberto; El-Danaf, Rana N.; Osakada, Fumitaka; Sriram, Balaji; Dhande, Onkar S.; Nguyen, Phong L.; Callaway, Edward M.; Ghosh, Anirvan; Huberman, Andrew D. (2014-03-20). "A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex". Nature. 507 (7492): 358–361. doi:10.1038/nature12989. ISSN 1476-4687. PMC 4143386. PMID 24572358.
  11. Osterhout, Jessica A.; Stafford, Benjamin K.; Nguyen, Phong L.; Yoshihara, Yoshihiro; Huberman, Andrew D. (2015-05-20). "Contactin-4 mediates axon-target specificity and functional development of the accessory optic system". Neuron. 86 (4): 985–999. doi:10.1016/j.neuron.2015.04.005. ISSN 1097-4199. PMC 4706364. PMID 25959733.
  12. El-Danaf, Rana N.; Huberman, Andrew D. (2015-02-11). "Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types". The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 35 (6): 2329–2343. doi:10.1523/JNEUROSCI.1419-14.2015. ISSN 1529-2401. PMID 25673829.
  13. Lim, Jung-Hwan A; Stafford, Benjamin K; Nguyen, Phong L; Lien, Brian V; Wang, Chen; Zukor, Katherine; He, Zhigang; Huberman, Andrew D. "Neural activity promotes long-distance, target-specific regeneration of adult retinal axons". Nature Neuroscience. 19 (8): 1073–1084. doi:10.1038/nn.4340.
  14. "Andrew Huberman named 2013 McKnight Scholar". biology.ucsd.edu. Retrieved 2016-08-08.
  15. "Andrew Huberman". www.pewtrusts.org. Retrieved 2016-08-08.
  16. "Andrew Huberman named 2013 McKnight Scholar". biology.ucsd.edu. Retrieved 2016-08-08.