Misplaced Pages

Enriched uranium: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 15:32, 21 November 2004 editRdsmith4 (talk | contribs)Extended confirmed users23,841 editsm Reverted edits by 62.114.171.56 to last version by JTN← Previous edit Revision as of 13:22, 4 December 2004 edit undoPatrick (talk | contribs)Edit filter managers, Administrators68,523 editsmNo edit summaryNext edit →
Line 1: Line 1:
'''Enriched uranium''' is ] whose ] content has been increased through the process of ]. Natural uranium consists mostly of the ] ], with about 0.7 percent by weight as U-235 which is the only isotope existing in nature to any appreciable extent that is ] by thermal ]s. For use in commercial ]s natural uranium is enriched to about 3 percent U-235. Highly enriched uranium (HEU), which is used in nuclear submarine reactors contains at least 50 percent U-235, but typically exceeds 90 percent. Generally very high levels of enrichment are needed for ]s, as the presence of the U-238 isotope inhibits the runaway chain reaction that is responsible for the weapon's power. '''Enriched uranium''' is ] whose ] content has been increased through the process of ]. Natural uranium consists mostly of the ] ], with about 0.7 percent by weight as U-235 which is the only isotope existing in nature to any appreciable extent that is ] by ]s. For use in commercial ]s natural uranium is enriched to about 3 percent U-235. Highly enriched uranium (HEU), which is used in ] contains at least 50 percent U-235, but typically exceeds 90 percent. Generally very high levels of enrichment are needed for ]s, as the presence of the U-238 isotope inhibits the runaway chain reaction that is responsible for the weapon's power.


During the ] enriched uranium was given the codename oralloy, a shortened version of Oak Ridge alloy, after the plant where the uranium was enriched. The term oralloy is still occasionally used to refer to enriched uranium. The remaining U-238 with extremely low U-235 content is known as ], and is considerably less ] than even natural uranium, though still extremely dense and is useful for armor penetrating weapons. During the ] enriched uranium was given the codename oralloy, a shortened version of Oak Ridge alloy, after the plant where the uranium was enriched. The term oralloy is still occasionally used to refer to enriched uranium. The remaining U-238 with extremely low U-235 content is known as ], and is considerably less ] than even natural uranium, though still extremely dense and is useful for armor penetrating weapons.

Revision as of 13:22, 4 December 2004

Enriched uranium is uranium whose uranium-235 content has been increased through the process of isotope separation. Natural uranium consists mostly of the U-238 isotope, with about 0.7 percent by weight as U-235 which is the only isotope existing in nature to any appreciable extent that is fissionable by thermal neutrons. For use in commercial nuclear reactors natural uranium is enriched to about 3 percent U-235. Highly enriched uranium (HEU), which is used in nuclear submarine reactors contains at least 50 percent U-235, but typically exceeds 90 percent. Generally very high levels of enrichment are needed for nuclear weapons, as the presence of the U-238 isotope inhibits the runaway chain reaction that is responsible for the weapon's power.

During the Manhattan Project enriched uranium was given the codename oralloy, a shortened version of Oak Ridge alloy, after the plant where the uranium was enriched. The term oralloy is still occasionally used to refer to enriched uranium. The remaining U-238 with extremely low U-235 content is known as depleted uranium, and is considerably less radioactive than even natural uranium, though still extremely dense and is useful for armor penetrating weapons.

The ability to enrich uranium is of interest to those concerned about nuclear weapons proliferation.

For information on how uranium is enriched see isotope separation.

Category: