Misplaced Pages

Percent-encoding: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 13:45, 3 August 2018 editKgfleischmann (talk | contribs)Extended confirmed users6,032 edits Undid revision 853211515 by 171.76.85.106 (talk)Unexplained removalTag: Undo← Previous edit Revision as of 17:20, 3 September 2018 edit undo223.24.92.215 (talk)No edit summaryTags: nowiki added Visual edit Mobile edit Mobile web editNext edit →
Line 1: Line 1:
{{selfref|For the urlencode in MediaWiki, see ]}}'''Percent-encoding''', also known as '''URL encoding''', is a mechanism for encoding information in a Uniform Resource Identifier (URI) under certain circumstances. Although it is known as ''URL encoding'' it is, in fact, used more generally within the main Uniform Resource Identifier (URI) set, which includes both Uniform Resource Locator (URL) and Uniform Resource Name (URN). As such, it is also used in the preparation of data of the <code>application/x-www-form-urlencoded</code> media type, as is often used in the submission of HTML form data in HTTP requests.
{{selfref|For the urlencode in MediaWiki, see ]}}
{{selfref|For links within Misplaced Pages needing percent-encoding, see ]}}

'''Percent-encoding''', also known as '''URL encoding''', is a mechanism for ] information in a ] (URI) under certain circumstances. Although it is known as ''URL encoding'' it is, in fact, used more generally within the main ] (URI) set, which includes both ] (URL) and ] (URN). As such, it is also used in the preparation of data of the <code>application/x-www-form-urlencoded</code> ], as is often used in the submission of ] ] data in ] requests.


== Percent-encoding in a URI == == Percent-encoding in a URI ==


=== Types of URI characters === === Types of URI characters ===
The characters allowed in a URI are either ''reserved'' or ''unreserved'' (or a percent character as part of a percent-encoding). ''Reserved'' characters are those characters that sometimes have special meaning. For example, ] characters are used to separate different parts of a URL (or more generally, a URI). ''Unreserved'' characters have no such meanings. Using percent-encoding, reserved characters are represented using special character sequences. The sets of reserved and unreserved characters and the circumstances under which certain reserved characters have special meaning have changed slightly with each revision of specifications that govern URIs and URI schemes. The characters allowed in a URI are either ''reserved'' or ''unreserved'' (or a percent character as part of a percent-encoding). ''Reserved'' characters are those characters that sometimes have special meaning. For example, forward slash characters are used to separate different parts of a URL (or more generally, a URI). ''Unreserved'' characters have no such meanings. Using percent-encoding, reserved characters are represented using special character sequences. The sets of reserved and unreserved characters and the circumstances under which certain reserved characters have special meaning have changed slightly with each revision of specifications that govern URIs and URI schemes.


{| cellpadding="6px" border=1 style="border:1px solid #C0C0C0; border-collapse:collapse; background-color:white;" class="wikitable" {| cellpadding="6px" border=1 style="border:1px solid #C0C0C0; border-collapse:collapse; background-color:white;" class="wikitable"
|+RFC 3986 section 2.2 ''Reserved Characters'' (January 2005) |+<nowiki>RFC 3986</nowiki> section 2.2 ''Reserved Characters'' (January 2005)
|- |-
| <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code></nowiki>]]</code> | <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code></nowiki>]]</code>
Line 16: Line 13:


{| cellpadding="6px" border=1 style="border:1px solid #C0C0C0; border-collapse:collapse; background-color:white;" class="wikitable" {| cellpadding="6px" border=1 style="border:1px solid #C0C0C0; border-collapse:collapse; background-color:white;" class="wikitable"
|+RFC 3986 section 2.3 ''Unreserved Characters'' (January 2005) |+<nowiki>RFC 3986</nowiki> section 2.3 ''Unreserved Characters'' (January 2005)
|- |-
| <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> | <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code>
Line 29: Line 26:


=== Percent-encoding reserved characters === === Percent-encoding reserved characters ===
When a character from the reserved set (a "reserved character") has special meaning (a "reserved purpose") in a certain context, and a URI scheme says that it is necessary to use that character for some ''other'' purpose, then the character must be ''percent-encoded''. Percent-encoding a reserved character involves converting the character to its corresponding byte value in ] and then representing that value as a pair of ] digits. The digits, preceded by a ] (<code>%</code>) which is used as an ], are then used in the URI in place of the reserved character. When a character from the reserved set (a "reserved character") has special meaning (a "reserved purpose") in a certain context, and a URI scheme says that it is necessary to use that character for some ''other'' purpose, then the character must be ''percent-encoded''. Percent-encoding a reserved character involves converting the character to its corresponding byte value in ASCII and then representing that value as a pair of hexadecimal digits. The digits, preceded by a percent sign (<code>%</code>) which is used as an escape character, are then used in the URI in place of the reserved character.
(For a non-ASCII character, it is typically converted to its byte sequence in ], and then each byte value is represented as above.) (For a non-ASCII character, it is typically converted to its byte sequence in UTF-8, and then each byte value is represented as above.)


The reserved character <code>/</code>, for example, if used in the "path" component of a URI, has the special meaning of being a ] ''between'' path segments. If, according to a given URI scheme, <code>/</code> needs to be ''in'' a path segment, then the three characters <code>%2F</code> or <code>%2f</code> must be used in the segment instead of a raw <code>/</code>. The reserved character <code>/</code>, for example, if used in the "path" component of a URI, has the special meaning of being a delimiter ''between'' path segments. If, according to a given URI scheme, <code>/</code> needs to be ''in'' a path segment, then the three characters <code>%2F</code> or <code>%2f</code> must be used in the segment instead of a raw <code>/</code>.

{| cellpadding="6px" border=1 style="border:1px solid #C0C0C0; border-collapse:collapse; background-color:white;" class="wikitable"
|+Reserved characters after percent-encoding
|-
| <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code></nowiki>]]</code>
|-
| <code>%21</code> || <code>%23</code> || <code>%24</code> || <code>%26</code> || <code>%27</code> || <code>%28</code> || <code>%29</code> || <code>%2A</code> || <code>%2B</code> || <code>%2C</code> || <code>%2F</code> || <code>%3A</code> || <code>%3B</code> || <code>%3D</code>|| <code>%3F</code> || <code>%40</code> || <code>%5B</code> || <code>%5D</code>
|}


Reserved characters that have no reserved purpose in a particular context may also be percent-encoded but are not semantically different from those that are not. Reserved characters that have no reserved purpose in a particular context may also be percent-encoded but are not semantically different from those that are not.


In the "]" component of a URI (the part after a ? character), for example, <code>/</code> is still considered a reserved character but it normally has no reserved purpose, unless a particular URI scheme says otherwise. The character does not need to be percent-encoded when it has no reserved purpose. In the "query" component of a URI (the part after a ? character), for example, <code>/</code> is still considered a reserved character but it normally has no reserved purpose, unless a particular URI scheme says otherwise. The character does not need to be percent-encoded when it has no reserved purpose.


URIs that differ only by whether a reserved character is percent-encoded or appears literally are normally considered not equivalent (denoting the same resource) unless it can be determined that the reserved characters in question have no reserved purpose. This determination is dependent upon the rules established for reserved characters by individual URI schemes. URIs that differ only by whether a reserved character is percent-encoded or appears literally are normally considered not equivalent (denoting the same resource) unless it can be determined that the reserved characters in question have no reserved purpose. This determination is dependent upon the rules established for reserved characters by individual URI schemes.
Line 57: Line 46:


=== Percent-encoding arbitrary data === === Percent-encoding arbitrary data ===
Most URI schemes involve the representation of arbitrary data, such as an ] or ] path, as components of a URI. URI scheme specifications should, but often don't, provide an explicit mapping between URI characters and all possible data values being represented by those characters. Most URI schemes involve the representation of arbitrary data, such as an IP address or file system path, as components of a URI. URI scheme specifications should, but often don't, provide an explicit mapping between URI characters and all possible data values being represented by those characters.


==== Binary data ==== ==== Binary data ====
Since the publication of RFC 1738 in 1994 it has been specified that schemes that provide for the representation of ] in a URI must divide the data into 8-bit bytes and percent-encode each byte in the same manner as above.<ref>RFC 1738 §2.2; RFC 2396 §2.4; RFC 3986 §1.2.1, 2.1, 2.5</ref> Byte value 0x0F, for example, should be represented by <code>%0F</code>, but byte value 0x41 can be represented by <code>A</code>, or <code>%41</code>. The use of unencoded characters for alphanumeric and other unreserved characters is typically preferred as it results in shorter URLs. Since the publication of <nowiki>RFC 1738</nowiki> in 1994 it has been specified that schemes that provide for the representation of binary data in a URI must divide the data into 8-bit bytes and percent-encode each byte in the same manner as above.<ref>RFC 1738 §2.2; RFC 2396 §2.4; RFC 3986 §1.2.1, 2.1, 2.5</ref> Byte value 0x0F, for example, should be represented by <code>%0F</code>, but byte value 0x41 can be represented by <code>A</code>, or <code>%41</code>. The use of unencoded characters for alphanumeric and other unreserved characters is typically preferred as it results in shorter URLs.


==== Character data ==== ==== Character data ====
The procedure for percent-encoding binary data has often been extrapolated, sometimes inappropriately or without being fully specified, to apply to character-based data. In the ]'s formative years, when dealing with data characters in the ASCII repertoire and using their corresponding bytes in ASCII as the basis for determining percent-encoded sequences, this practice was relatively harmless; it was just assumed that characters and bytes mapped one-to-one and were interchangeable. The need to represent characters outside the ASCII range, however, grew quickly and URI schemes and protocols often failed to provide standard rules for preparing character data for inclusion in a URI. Web applications consequently began using different multi-byte, ], and other non-ASCII-compatible encodings as the basis for percent-encoding, leading to ambiguities and difficulty interpreting URIs reliably. The procedure for percent-encoding binary data has often been extrapolated, sometimes inappropriately or without being fully specified, to apply to character-based data. In the World Wide Web's formative years, when dealing with data characters in the ASCII repertoire and using their corresponding bytes in ASCII as the basis for determining percent-encoded sequences, this practice was relatively harmless; it was just assumed that characters and bytes mapped one-to-one and were interchangeable. The need to represent characters outside the ASCII range, however, grew quickly and URI schemes and protocols often failed to provide standard rules for preparing character data for inclusion in a URI. Web applications consequently began using different multi-byte, stateful, and other non-ASCII-compatible encodings as the basis for percent-encoding, leading to ambiguities and difficulty interpreting URIs reliably.


For example, many URI schemes and protocols based on RFCs 1738 and 2396 presume that the data characters will be converted to bytes according to some unspecified ] before being represented in a URI by unreserved characters or percent-encoded bytes. If the scheme does not allow the URI to provide a hint as to what encoding was used, or if the encoding conflicts with the use of ASCII to percent-encode reserved and unreserved characters, then the URI cannot be reliably interpreted. Some schemes fail to account for encoding at all, and instead just suggest that data characters map directly to URI characters, which leaves it up to implementations to decide whether and how to percent-encode data characters that are in neither the reserved nor unreserved sets. For example, many URI schemes and protocols based on RFCs 1738 and 2396 presume that the data characters will be converted to bytes according to some unspecified character encoding before being represented in a URI by unreserved characters or percent-encoded bytes. If the scheme does not allow the URI to provide a hint as to what encoding was used, or if the encoding conflicts with the use of ASCII to percent-encode reserved and unreserved characters, then the URI cannot be reliably interpreted. Some schemes fail to account for encoding at all, and instead just suggest that data characters map directly to URI characters, which leaves it up to implementations to decide whether and how to percent-encode data characters that are in neither the reserved nor unreserved sets.

{| cellpadding="6px" border=1 style="border:1px solid #C0C0C0; border-collapse:collapse; background-color:white;" class="wikitable"
|+Common characters after percent-encoding (ASCII or UTF-8 based)
|-
| <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code> || <code>]</code>
|-
| <code>%0A</code> ''or'' <code>%0D</code> ''or'' <code>%0D%0A</code> || <code>%20</code> || <code>%22</code> || <code>%25</code> || <code>%2D</code> || <code>%2E</code> || <code>%3C</code> || <code>%3E</code> || <code>%5C</code> || <code>%5E</code> || <code>%5F</code> || <code>%60</code> || <code>%7B</code> || <code>%7C</code> || <code>%7D</code> || <code>%7E</code>
|}


Arbitrary character data is sometimes percent-encoded and used in non-URI situations, such as for password obfuscation programs, or other system-specific translation protocols. Arbitrary character data is sometimes percent-encoded and used in non-URI situations, such as for password obfuscation programs, or other system-specific translation protocols.
Line 79: Line 60:
=== Current standard === === Current standard ===
{{main article|Internationalized resource identifier}} {{main article|Internationalized resource identifier}}
The generic URI syntax recommends that new URI schemes that provide for the representation of character data in a URI should, in effect, represent characters from the unreserved set without translation, and should convert all other characters to bytes according to ], and then percent-encode those values. This suggestion was introduced in January 2005 with the publication of RFC 3986. URI schemes introduced before this date are not affected. The generic URI syntax recommends that new URI schemes that provide for the representation of character data in a URI should, in effect, represent characters from the unreserved set without translation, and should convert all other characters to bytes according to UTF-8, and then percent-encode those values. This suggestion was introduced in January 2005 with the publication of <nowiki>RFC 3986</nowiki>. URI schemes introduced before this date are not affected.


Not addressed by the current specification is what to do with encoded character data. For example, in computers, character data manifests in encoded form, at some level, and thus could be treated as either binary or character data when being mapped to URI characters. Presumably, it is up to the URI scheme specifications to account for this possibility and require one or the other, but in practice, few, if any, actually do. Not addressed by the current specification is what to do with encoded character data. For example, in computers, character data manifests in encoded form, at some level, and thus could be treated as either binary or character data when being mapped to URI characters. Presumably, it is up to the URI scheme specifications to account for this possibility and require one or the other, but in practice, few, if any, actually do.


=== Non-standard implementations === === Non-standard implementations ===
There exists a non-standard encoding for Unicode characters: <code>%u''xxxx''</code>, where ''xxxx'' is a ] code unit represented as four hexadecimal digits. This behavior is not specified by any RFC and has been by the W3C. The eighth edition of ] still includes an <code>escape</code> function that uses this syntax, along with <code>encodeURI</code> and <code>encodeURIComponent</code> functions, which apply ] encoding to a string, then percent-escape the resulting bytes.<ref>{{cite web|url=https://www.ecma-international.org/ecma-262/8.0/index.html|title=ECMAScript® 2017 Language Specification (ECMA-262, 8th edition, June 2017)|publisher=Ecma International®}}</ref> There exists a non-standard encoding for Unicode characters: <code>%u''xxxx''</code>, where ''xxxx'' is a UTF-16 code unit represented as four hexadecimal digits. This behavior is not specified by any RFC and has been rejected by the W3C. The eighth edition of ECMA-262 still includes an <code>escape</code> function that uses this syntax, along with <code>encodeURI</code> and <code>encodeURIComponent</code> functions, which apply UTF-8 encoding to a string, then percent-escape the resulting bytes.<ref>{{cite web|url=https://www.ecma-international.org/ecma-262/8.0/index.html|title=ECMAScript® 2017 Language Specification (ECMA-262, 8th edition, June 2017)|publisher=Ecma International®}}</ref>


==The application/x-www-form-urlencoded type== ==The application/x-www-form-urlencoded type==
<!-- ] and ] redirect to this section --> <!-- ] and ] redirect to this section -->
When data that has been entered into HTML ]s is submitted, the form field names and values are encoded and sent to the server in an HTTP request message using method ] or ], or, historically, via ].<ref>User-agent support for email based ] form submission, using a 'mailto' ] as the form action, was proposed in RFC 1867 section 5.6, during the HTML 3.2 era. Various web browsers implemented it by invoking a separate email program or using their own rudimentary ] capabilities. Although sometimes unreliable, it was briefly popular as a simple way to transmit form data without involving a web server or ] scripts.</ref> The encoding used by default is based on an early version of the general URI percent-encoding rules,<ref>{{Cite web|url=https://tools.ietf.org/html/rfc1630|title=RFC 1630|last=Berners-Lee|first=T.|date=June 1994|website=IETF Tools|publisher=IETF|access-date=29 June 2016}}</ref> with a number of modifications such as ] normalization and replacing spaces with <code>+</code> instead of <code>%20</code>. The ] of data encoded this way is <code>application/x-www-form-urlencoded</code>, and it is currently defined (still in a very outdated manner) in the HTML and ] specifications. In addition, the ] specification contains rules for how web servers decode data of this type and make it available to applications. When data that has been entered into HTML forms is submitted, the form field names and values are encoded and sent to the server in an HTTP request message using method GET or POST, or, historically, via email.<ref>User-agent support for email based ] form submission, using a 'mailto' ] as the form action, was proposed in RFC 1867 section 5.6, during the HTML 3.2 era. Various web browsers implemented it by invoking a separate email program or using their own rudimentary ] capabilities. Although sometimes unreliable, it was briefly popular as a simple way to transmit form data without involving a web server or ] scripts.</ref> The encoding used by default is based on an early version of the general URI percent-encoding rules,<ref>{{Cite web|url=https://tools.ietf.org/html/rfc1630|title=RFC 1630|last=Berners-Lee|first=T.|date=June 1994|website=IETF Tools|publisher=IETF|access-date=29 June 2016}}</ref> with a number of modifications such as newline normalization and replacing spaces with <code>+</code> instead of <code>%20</code>. The media type of data encoded this way is <code>application/x-www-form-urlencoded</code>, and it is currently defined (still in a very outdated manner) in the HTML and XForms specifications. In addition, the CGI specification contains rules for how web servers decode data of this type and make it available to applications.


When HTML form data is sent in an HTTP GET request, it is included in the ] of the request URI using the same syntax described above. When sent in an HTTP ] request or via email, the data is placed in the body of the message, and <code>application/x-www-form-urlencoded</code> is included in the message's Content-Type header. When HTML form data is sent in an HTTP GET request, it is included in the query component of the request URI using the same syntax described above. When sent in an HTTP POST request or via email, the data is placed in the body of the message, and <code>application/x-www-form-urlencoded</code> is included in the message's Content-Type header.
<!-- discuss this media type, including how it is underspecified and outdated, how it differs from current standards, and how it has been implemented in web browsers for submitting HTML form data using the encoding of the HTML document containing the form (or user override) as the basis for percent-encoding, and workarounds used for unencodable characters --> <!-- discuss this media type, including how it is underspecified and outdated, how it differs from current standards, and how it has been implemented in web browsers for submitting HTML form data using the encoding of the HTML document containing the form (or user override) as the basis for percent-encoding, and workarounds used for unencodable characters -->


== See also == == See also ==
* ] * Internationalized Resource Identifier
* ] * Punycode
* ] for a comparison of various encoding algorithms * Binary-to-text encoding for a comparison of various encoding algorithms
* ] * Shellcode


==References== ==References==
{{reflist}}

== External links == == External links ==
The following specifications all discuss and define reserved characters, unreserved characters, and percent-encoding, in some form or other: The following specifications all discuss and define reserved characters, unreserved characters, and percent-encoding, in some form or other:
* RFC 3986 / ] 66 (plus ), the current generic URI syntax specification. * <nowiki>RFC 3986</nowiki> / STD 66 (plus errata), the current generic URI syntax specification.
* RFC 2396 (obsolete, plus ) and RFC 2732 (plus ) together comprised the previous version of the generic URI syntax specification. * <nowiki>RFC 2396</nowiki> (obsolete, plus errata) and <nowiki>RFC 2732</nowiki> (plus errata) together comprised the previous version of the generic URI syntax specification.
* RFC 1738 (mostly obsolete) and RFC 1808 (obsolete), which define ]s. * <nowiki>RFC 1738</nowiki> (mostly obsolete) and <nowiki>RFC 1808</nowiki> (obsolete), which define URLs.
* RFC 1630 (obsolete), the first generic URI syntax specification. * <nowiki>RFC 1630</nowiki> (obsolete), the first generic URI syntax specification.
* * W3C Guidelines on Naming and Addressing: URIs, URLs, ...
* * W3C explanation of UTF-8 in URIs
* * W3C HTML form content types
] ]
] ]

Revision as of 17:20, 3 September 2018

For the urlencode in MediaWiki, see Help:Magic words

Percent-encoding, also known as URL encoding, is a mechanism for encoding information in a Uniform Resource Identifier (URI) under certain circumstances. Although it is known as URL encoding it is, in fact, used more generally within the main Uniform Resource Identifier (URI) set, which includes both Uniform Resource Locator (URL) and Uniform Resource Name (URN). As such, it is also used in the preparation of data of the application/x-www-form-urlencoded media type, as is often used in the submission of HTML form data in HTTP requests.

Percent-encoding in a URI

Types of URI characters

The characters allowed in a URI are either reserved or unreserved (or a percent character as part of a percent-encoding). Reserved characters are those characters that sometimes have special meaning. For example, forward slash characters are used to separate different parts of a URL (or more generally, a URI). Unreserved characters have no such meanings. Using percent-encoding, reserved characters are represented using special character sequences. The sets of reserved and unreserved characters and the circumstances under which certain reserved characters have special meaning have changed slightly with each revision of specifications that govern URIs and URI schemes.

RFC 3986 section 2.2 Reserved Characters (January 2005)
! * ' ( ) ; : @ & = + $ , / ? # [ ]
RFC 3986 section 2.3 Unreserved Characters (January 2005)
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 - _ . ~

Other characters in a URI must be percent encoded.

Percent-encoding reserved characters

When a character from the reserved set (a "reserved character") has special meaning (a "reserved purpose") in a certain context, and a URI scheme says that it is necessary to use that character for some other purpose, then the character must be percent-encoded. Percent-encoding a reserved character involves converting the character to its corresponding byte value in ASCII and then representing that value as a pair of hexadecimal digits. The digits, preceded by a percent sign (%) which is used as an escape character, are then used in the URI in place of the reserved character. (For a non-ASCII character, it is typically converted to its byte sequence in UTF-8, and then each byte value is represented as above.)

The reserved character /, for example, if used in the "path" component of a URI, has the special meaning of being a delimiter between path segments. If, according to a given URI scheme, / needs to be in a path segment, then the three characters %2F or %2f must be used in the segment instead of a raw /.

Reserved characters that have no reserved purpose in a particular context may also be percent-encoded but are not semantically different from those that are not.

In the "query" component of a URI (the part after a ? character), for example, / is still considered a reserved character but it normally has no reserved purpose, unless a particular URI scheme says otherwise. The character does not need to be percent-encoded when it has no reserved purpose.

URIs that differ only by whether a reserved character is percent-encoded or appears literally are normally considered not equivalent (denoting the same resource) unless it can be determined that the reserved characters in question have no reserved purpose. This determination is dependent upon the rules established for reserved characters by individual URI schemes.

Percent-encoding unreserved characters

Characters from the unreserved set never need to be percent-encoded.

URIs that differ only by whether an unreserved character is percent-encoded or appears literally are equivalent by definition, but URI processors, in practice, may not always recognize this equivalence. For example, URI consumers shouldn't treat %41 differently from A or %7E differently from ~, but some do. For maximum interoperability, URI producers are discouraged from percent-encoding unreserved characters.

Percent-encoding the percent character

Because the percent character ( % ) serves as the indicator for percent-encoded octets, it must be percent-encoded as %25 for that octet to be used as data within a URI.

Percent-encoding arbitrary data

Most URI schemes involve the representation of arbitrary data, such as an IP address or file system path, as components of a URI. URI scheme specifications should, but often don't, provide an explicit mapping between URI characters and all possible data values being represented by those characters.

Binary data

Since the publication of RFC 1738 in 1994 it has been specified that schemes that provide for the representation of binary data in a URI must divide the data into 8-bit bytes and percent-encode each byte in the same manner as above. Byte value 0x0F, for example, should be represented by %0F, but byte value 0x41 can be represented by A, or %41. The use of unencoded characters for alphanumeric and other unreserved characters is typically preferred as it results in shorter URLs.

Character data

The procedure for percent-encoding binary data has often been extrapolated, sometimes inappropriately or without being fully specified, to apply to character-based data. In the World Wide Web's formative years, when dealing with data characters in the ASCII repertoire and using their corresponding bytes in ASCII as the basis for determining percent-encoded sequences, this practice was relatively harmless; it was just assumed that characters and bytes mapped one-to-one and were interchangeable. The need to represent characters outside the ASCII range, however, grew quickly and URI schemes and protocols often failed to provide standard rules for preparing character data for inclusion in a URI. Web applications consequently began using different multi-byte, stateful, and other non-ASCII-compatible encodings as the basis for percent-encoding, leading to ambiguities and difficulty interpreting URIs reliably.

For example, many URI schemes and protocols based on RFCs 1738 and 2396 presume that the data characters will be converted to bytes according to some unspecified character encoding before being represented in a URI by unreserved characters or percent-encoded bytes. If the scheme does not allow the URI to provide a hint as to what encoding was used, or if the encoding conflicts with the use of ASCII to percent-encode reserved and unreserved characters, then the URI cannot be reliably interpreted. Some schemes fail to account for encoding at all, and instead just suggest that data characters map directly to URI characters, which leaves it up to implementations to decide whether and how to percent-encode data characters that are in neither the reserved nor unreserved sets.

Arbitrary character data is sometimes percent-encoded and used in non-URI situations, such as for password obfuscation programs, or other system-specific translation protocols.

Current standard

Main article: Internationalized resource identifier

The generic URI syntax recommends that new URI schemes that provide for the representation of character data in a URI should, in effect, represent characters from the unreserved set without translation, and should convert all other characters to bytes according to UTF-8, and then percent-encode those values. This suggestion was introduced in January 2005 with the publication of RFC 3986. URI schemes introduced before this date are not affected.

Not addressed by the current specification is what to do with encoded character data. For example, in computers, character data manifests in encoded form, at some level, and thus could be treated as either binary or character data when being mapped to URI characters. Presumably, it is up to the URI scheme specifications to account for this possibility and require one or the other, but in practice, few, if any, actually do.

Non-standard implementations

There exists a non-standard encoding for Unicode characters: %uxxxx, where xxxx is a UTF-16 code unit represented as four hexadecimal digits. This behavior is not specified by any RFC and has been rejected by the W3C. The eighth edition of ECMA-262 still includes an escape function that uses this syntax, along with encodeURI and encodeURIComponent functions, which apply UTF-8 encoding to a string, then percent-escape the resulting bytes.

The application/x-www-form-urlencoded type

When data that has been entered into HTML forms is submitted, the form field names and values are encoded and sent to the server in an HTTP request message using method GET or POST, or, historically, via email. The encoding used by default is based on an early version of the general URI percent-encoding rules, with a number of modifications such as newline normalization and replacing spaces with + instead of %20. The media type of data encoded this way is application/x-www-form-urlencoded, and it is currently defined (still in a very outdated manner) in the HTML and XForms specifications. In addition, the CGI specification contains rules for how web servers decode data of this type and make it available to applications.

When HTML form data is sent in an HTTP GET request, it is included in the query component of the request URI using the same syntax described above. When sent in an HTTP POST request or via email, the data is placed in the body of the message, and application/x-www-form-urlencoded is included in the message's Content-Type header.

See also

  • Internationalized Resource Identifier
  • Punycode
  • Binary-to-text encoding for a comparison of various encoding algorithms
  • Shellcode

References

External links

The following specifications all discuss and define reserved characters, unreserved characters, and percent-encoding, in some form or other:

  • RFC 3986 / STD 66 (plus errata), the current generic URI syntax specification.
  • RFC 2396 (obsolete, plus errata) and RFC 2732 (plus errata) together comprised the previous version of the generic URI syntax specification.
  • RFC 1738 (mostly obsolete) and RFC 1808 (obsolete), which define URLs.
  • RFC 1630 (obsolete), the first generic URI syntax specification.
  • W3C Guidelines on Naming and Addressing: URIs, URLs, ...
  • W3C explanation of UTF-8 in URIs
  • W3C HTML form content types
  1. RFC 1738 §2.2; RFC 2396 §2.4; RFC 3986 §1.2.1, 2.1, 2.5
  2. "ECMAScript® 2017 Language Specification (ECMA-262, 8th edition, June 2017)". Ecma International®.
  3. User-agent support for email based HTML form submission, using a 'mailto' URL as the form action, was proposed in RFC 1867 section 5.6, during the HTML 3.2 era. Various web browsers implemented it by invoking a separate email program or using their own rudimentary SMTP capabilities. Although sometimes unreliable, it was briefly popular as a simple way to transmit form data without involving a web server or CGI scripts.
  4. Berners-Lee, T. (June 1994). "RFC 1630". IETF Tools. IETF. Retrieved 29 June 2016.
Categories: