Misplaced Pages

Kepler-91b: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 17:07, 22 February 2018 editDePiep (talk | contribs)Extended confirmed users294,285 editsm Val: fix/cleanup parameters (via WP:JWB)← Previous edit Revision as of 10:31, 16 September 2018 edit undo186.105.1.101 (talk) Some references added and correct some informationTag: Visual editNext edit →
Line 41: Line 41:
{{Planetbox end}} {{Planetbox end}}


'''Kepler-91b''' is a planet orbiting ], a star slightly more massive than the ]. Kepler-91 has left the main sequence and is now a ] star. '''Kepler-91b''' is a giant planet orbiting ], a star slightly more massive than the ]. Kepler-91 has left the main sequence and is now a ] star.


==Discovery and further confirmation== ==Discovery and further confirmation==
Kepler-91b was detected by analyzing the data of ] where a transit-like signal was found. Initially thought to be a false positive due to light curve variations by a self-luminous object, it was later revealed that due to low density of Kepler-91's shape is distorted to slightly ellipsoidal shape due to gravitational effects of the planet. Ellipsoidal light variations caused by Kepler-91b constitute more than the third of light variations compared to transit depth. Ellipsoidal light variations also allowed to determine the planet's mass. It was also found that Kepler-91b reflects some of the starlight from its star.<ref name="Lillo-Box">{{Cite journal|arxiv=1312.3943|last1= Lillo-Box|first1= J.|title= Kepler-91b: A planet at the end of its life. Planet and giant host star properties via light-curve variations|journal= Astronomy & Astrophysics|volume= 562|pages= A109|last2= Barrado|first2= D.|last3= Moya|first3= A.|last4= Montesinos|first4= B.|last5= Montalbán|first5= J.|last6= Bayo|first6= A.|last7= Barbieri|first7= M.|last8= Régulo|first8= C.|last9= Mancini|first9= L.|last10= Bouy|first10= H.|last11= Henning|first11= T.|year= 2013|doi= 10.1051/0004-6361/201322001|bibcode= 2014A&A...562A.109L}}</ref> Kepler-91b was detected by analyzing the data of ] where a transit-like signal was found. Initially thought to be a false positive due to light curve variations by a self-luminous object, it was later revealed that due to low density of Kepler-91's shape is distorted to slightly ellipsoidal shape due to gravitational effects of the planet. Ellipsoidal light variations caused by Kepler-91b constitute more than the third of light variations compared to transit depth. Ellipsoidal light variations also allowed to determine the planet's mass. It was also found that Kepler-91b reflects some of the starlight from its star.<ref name="Lillo-Box">{{Cite journal|arxiv=1312.3943|last1= Lillo-Box|first1= J.|title= Kepler-91b: A planet at the end of its life. Planet and giant host star properties via light-curve variations|journal= Astronomy & Astrophysics|volume= 562|pages= A109|last2= Barrado|first2= D.|last3= Moya|first3= A.|last4= Montesinos|first4= B.|last5= Montalbán|first5= J.|last6= Bayo|first6= A.|last7= Barbieri|first7= M.|last8= Régulo|first8= C.|last9= Mancini|first9= L.|last10= Bouy|first10= H.|last11= Henning|first11= T.|year= 2013|doi= 10.1051/0004-6361/201322001|bibcode= 2014A&A...562A.109L}}</ref>


Further analysis managed to question the planetary nature of the object, suspecting that it is a self-luminous object. However, the planetary nature was eventually confirmed again.<ref name="arxiv">{{Cite journal|arxiv=1401.1207|title=A High False Positive Rate for Kepler Planetary Candidates of Giant Stars using Asterodensity Profiling|journal=The Astrophysical Journal|volume=788|issue=2|pages=148|last1= Sliski|first1=David H.|last2= Kipping|first2=David M.|year=2014|doi=10.1088/0004-637X/788/2/148|bibcode=2014ApJ...788..148S}}</ref> Further analysis managed to question the planetary nature of the object, suspecting that it is a self-luminous object<ref name="arxiv">{{Cite journal|last1=Sliski|first1=David H.|last2=Kipping|first2=David M.|year=2014|title=A High False Positive Rate for Kepler Planetary Candidates of Giant Stars using Asterodensity Profiling|journal=The Astrophysical Journal|volume=788|issue=2|pages=148|arxiv=1401.1207|bibcode=2014ApJ...788..148S|doi=10.1088/0004-637X/788/2/148}}</ref>. However, the planetary nature was eventually confirmed again through both the radial velocity technique<ref>{{Cite journal|last=Lillo-Box|first=J.|last2=Barrado|first2=D.|last3=Henning|first3=Th.|last4=Mancini|first4=L.|last5=Ciceri|first5=S.|last6=Figueira|first6=P.|last7=Santos|first7=N. C.|last8=Aceituno|first8=J.|last9=Sánchez|first9=S.|date=2014-08|title=Radial velocity confirmation of Kepler-91 b|url=https://www.aanda.org/articles/aa/abs/2014/08/aa24587-14/aa24587-14.html|journal=Astronomy & Astrophysics|language=en|volume=568|pages=L1|doi=10.1051/0004-6361/201424587|issn=0004-6361}}</ref> and re-analysis of the light curve modulations<ref>{{Cite journal|last=Barclay|first=Thomas|last2=Endl|first2=Michael|last3=Huber|first3=Daniel|last4=Foreman-Mackey|first4=Daniel|last5=Cochran|first5=William D.|last6=MacQueen|first6=Phillip J.|last7=Rowe|first7=Jason F.|last8=Quintana|first8=Elisa V.|date=2015|title=Radial Velocity Observations and Light Curve Noise Modeling Confirm that Kepler-91b is a Giant Planet Orbiting a Giant Star|url=http://stacks.iop.org/0004-637X/800/i=1/a=46|journal=The Astrophysical Journal|language=en|volume=800|issue=1|pages=46|doi=10.1088/0004-637X/800/1/46|issn=0004-637X}}</ref>.


==Characteristics== ==Characteristics==
Line 54: Line 54:


==Possible trojan companion== ==Possible trojan companion==
The possibility of a ] to Kepler-91b was studied but the conclusion was that the transit-signal was a false-positive.<ref>{{Cite journal|arxiv=1511.01068|last1=Placek|first1=Ben|title=Characterization of Kepler-91b and the Investigation of a Potential Trojan Companion Using EXONEST|journal=The Astrophysical Journal|volume=814|issue=2|pages=147|last2= Knuth|first2=Kevin H.|last3=Angerhausen|first3=Daniel|last4= Jenkins|first4=Jon M.|year=2015|doi=10.1088/0004-637X/814/2/147|bibcode=2015ApJ...814..147P}}</ref> The possibility of a ] to Kepler-91b was suggested due to the presence of a small dim in the phase-folded light curve at phase 0.68<ref name="Lillo-Box" />. This was subsequently studied but the conclusion was that the transit-signal was a false-positive.<ref>{{Cite journal|arxiv=1511.01068|last1=Placek|first1=Ben|title=Characterization of Kepler-91b and the Investigation of a Potential Trojan Companion Using EXONEST|journal=The Astrophysical Journal|volume=814|issue=2|pages=147|last2= Knuth|first2=Kevin H.|last3=Angerhausen|first3=Daniel|last4= Jenkins|first4=Jon M.|year=2015|doi=10.1088/0004-637X/814/2/147|bibcode=2015ApJ...814..147P}}</ref>


==References== ==References==

Revision as of 10:31, 16 September 2018

Template:Planetbox begin Template:Planetbox star Template:Planetbox character Template:Planetbox orbit Template:Planetbox discovery Template:Planetbox catalog Template:Planetbox end

Kepler-91b is a giant planet orbiting Kepler-91, a star slightly more massive than the Sun. Kepler-91 has left the main sequence and is now a red giant branch star.

Discovery and further confirmation

Kepler-91b was detected by analyzing the data of Kepler spacecraft where a transit-like signal was found. Initially thought to be a false positive due to light curve variations by a self-luminous object, it was later revealed that due to low density of Kepler-91's shape is distorted to slightly ellipsoidal shape due to gravitational effects of the planet. Ellipsoidal light variations caused by Kepler-91b constitute more than the third of light variations compared to transit depth. Ellipsoidal light variations also allowed to determine the planet's mass. It was also found that Kepler-91b reflects some of the starlight from its star.

Further analysis managed to question the planetary nature of the object, suspecting that it is a self-luminous object. However, the planetary nature was eventually confirmed again through both the radial velocity technique and re-analysis of the light curve modulations.

Characteristics

Kepler-91b is about 14% less massive than Jupiter while being more than 35% larger, making it less than half of the density of water. Kepler-91b orbits around the host star in about 6.25 days. Despite being one of the least edge-on orbits relative to Earth with inclination being about 68.5 degrees, transit was detected due to low semi-major axis to host star radius ratio.

Kepler-91b is expected to be engulfed by the parent star within about 55 million years.

Possible trojan companion

The possibility of a trojan planet to Kepler-91b was suggested due to the presence of a small dim in the phase-folded light curve at phase 0.68. This was subsequently studied but the conclusion was that the transit-signal was a false-positive.

References

  1. ^ Lillo-Box, J.; Barrado, D.; Moya, A.; Montesinos, B.; Montalbán, J.; Bayo, A.; Barbieri, M.; Régulo, C.; Mancini, L.; Bouy, H.; Henning, T. (2013). "Kepler-91b: A planet at the end of its life. Planet and giant host star properties via light-curve variations". Astronomy & Astrophysics. 562: A109. arXiv:1312.3943. Bibcode:2014A&A...562A.109L. doi:10.1051/0004-6361/201322001.
  2. Sliski, David H.; Kipping, David M. (2014). "A High False Positive Rate for Kepler Planetary Candidates of Giant Stars using Asterodensity Profiling". The Astrophysical Journal. 788 (2): 148. arXiv:1401.1207. Bibcode:2014ApJ...788..148S. doi:10.1088/0004-637X/788/2/148.
  3. Lillo-Box, J.; Barrado, D.; Henning, Th.; Mancini, L.; Ciceri, S.; Figueira, P.; Santos, N. C.; Aceituno, J.; Sánchez, S. (2014-08). "Radial velocity confirmation of Kepler-91 b". Astronomy & Astrophysics. 568: L1. doi:10.1051/0004-6361/201424587. ISSN 0004-6361. {{cite journal}}: Check date values in: |date= (help)
  4. Barclay, Thomas; Endl, Michael; Huber, Daniel; Foreman-Mackey, Daniel; Cochran, William D.; MacQueen, Phillip J.; Rowe, Jason F.; Quintana, Elisa V. (2015). "Radial Velocity Observations and Light Curve Noise Modeling Confirm that Kepler-91b is a Giant Planet Orbiting a Giant Star". The Astrophysical Journal. 800 (1): 46. doi:10.1088/0004-637X/800/1/46. ISSN 0004-637X.
  5. Cite error: The named reference Esteves was invoked but never defined (see the help page).
  6. Placek, Ben; Knuth, Kevin H.; Angerhausen, Daniel; Jenkins, Jon M. (2015). "Characterization of Kepler-91b and the Investigation of a Potential Trojan Companion Using EXONEST". The Astrophysical Journal. 814 (2): 147. arXiv:1511.01068. Bibcode:2015ApJ...814..147P. doi:10.1088/0004-637X/814/2/147.
Cite error: A list-defined reference named "Roman1987" is not used in the content (see the help page).

External links

Exoplanets
Main topics
Sizes
and
types
Terrestrial
Gaseous
Other types
Formation
and
evolution
Systems
Host stars
Detection
Habitability
Catalogues
Lists
Other
2013 in space
Space probe launches Space probes launched in 2013
Space probes
Space observatories
  • IRIS (solar observation; Jun 2013)
  • Hisaki (ultraviolet observation; Sep 2013)
  • Gaia (astrometric observation; Dec 2013)


Impact events
Selected NEOs
Exoplanets Exoplanets discovered in 2013
Discoveries
Novae
Comets Comets in 2013
Space exploration
Categories: