Misplaced Pages

Four-vector

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Stevenj (talk | contribs) at 18:57, 18 July 2003 (a four-vector in physics is a more specific kind of object than a generic 4-tuple). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 18:57, 18 July 2003 by Stevenj (talk | contribs) (a four-vector in physics is a more specific kind of object than a generic 4-tuple)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In relativity, a four-vector is a vector in a four-dimensional real vector space, whose components transform like the space and time coordinates (ct, x, y, z) under spatial rotations and boosts (a change by a constant velocity to another inertial reference frame). The set of all such rotations and boosts, called Lorentz transformations and described by 4×4 matrices, forms the Lorentz group.

Examples of four-vectors include the coordinates (ct, x, y, z) themselves, the four-current (cρ, J) formed from charge density ρ and current density J, the electromagnetic four-potential (φ, A) formed from the scalar potential φ and vector potential A, and the four-momentum (E/c, p) formed from the (relativistic) energy E and momentum p. The speed of light (c) is often used to ensure that the first coordinate (time-like, labeled by index 0) has the same units as the following three coordinates (space-like, labeled by indices 1,..,3).

The scalar product between four-vectors a and b is defined as follows:

a b = ( a 0 a 1 a 2 a 3 ) ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ) ( b 0 b 1 b 2 b 3 ) = a 0 b 0 + a 1 b 1 + a 2 b 2 + a 3 b 3 {\displaystyle a\cdot b=\left({\begin{matrix}a_{0}&a_{1}&a_{2}&a_{3}\end{matrix}}\right)\left({\begin{matrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{matrix}}\right)\left({\begin{matrix}b_{0}\\b_{1}\\b_{2}\\b_{3}\end{matrix}}\right)=-a_{0}b_{0}+a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}}

Strictly speaking, this is not a proper inner product, since its value can be negative. Like the ordinary dot product of three-vectors, however, the result of this scalar product is a scalar: it is invariant under any Lorentz transformation. (This property is sometimes use to define the Lorentz group.) The 4×4 matrix in the above definition is called the metric tensor, sometimes denoted by g; its sign is a matter of convention, and some authors multiply it by -1.

The laws of physics are also postulated to be invariant under Lorentz transformations. An object in an inertial reference frame will perceive the universe as if the universe were Lorentz-transformed so that the perceiving object is stationary.

See also: four-velocity, four-acceleration, four-momentum, four-force.