< User talk:Hayson1991 This is an old revision of this page, as edited by 74.183.242.181 (talk ) at 23:02, 23 October 2008 (→The way you should do it ). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision .
Revision as of 23:02, 23 October 2008 by 74.183.242.181 (talk ) (→The way you should do it )(diff ) ← Previous revision | Latest revision (diff ) | Newer revision → (diff )
x
=
tan
(
y
)
{\displaystyle x=\tan \left(y\right)}
1
=
sec
2
(
y
)
∗
d
y
d
x
{\displaystyle 1=\sec ^{2}\left(y\right)*{\frac {dy}{dx}}}
(Chain rule, derivative of tan=sec^2)
1
sec
2
(
y
)
=
d
y
d
x
{\displaystyle {\frac {1}{\sec ^{2}\left(y\right)}}={\frac {dy}{dx}}}
cos
2
(
y
)
=
d
y
d
x
{\displaystyle \cos ^{2}\left(y\right)={\frac {dy}{dx}}}
d
y
d
x
=
cos
2
(
y
)
{\displaystyle {\frac {dy}{dx}}=\cos ^{2}\left(y\right)}
9~
x
2
y
+
x
y
2
=
6
{\displaystyle x^{2}y+xy^{2}=6\,}
(
2
x
∗
y
+
x
2
∗
d
y
d
x
)
+
(
1
∗
y
2
+
x
∗
2
y
d
y
d
x
)
=
0
{\displaystyle \left(2x*y+x^{2}*{\frac {dy}{dx}}\right)+\left(1*y^{2}+x*2y{\frac {dy}{dx}}\right)=0}
2
x
y
+
x
2
d
y
d
x
+
y
2
+
2
x
y
d
y
d
x
=
0
{\displaystyle 2xy+x^{2}{\frac {dy}{dx}}+y^{2}+2xy{\frac {dy}{dx}}=0}
x
2
d
y
d
x
+
2
x
y
d
y
d
x
=
−
2
x
y
−
y
2
{\displaystyle x^{2}{\frac {dy}{dx}}+2xy{\frac {dy}{dx}}=-2xy-y^{2}}
d
y
d
x
=
−
2
x
y
−
y
2
x
2
+
2
x
y
{\displaystyle {\frac {dy}{dx}}={\frac {-2xy-y^{2}}{x^{2}+2xy}}}
d
y
d
x
=
−
2
x
y
+
y
2
x
2
+
2
x
y
{\displaystyle {\frac {dy}{dx}}=-{\frac {2xy+y^{2}}{x^{2}+2xy}}}
Multiple u's
To Find dy/dx for
y
=
2
cos
(
(
5
x
)
2
)
{\displaystyle y=2\cos \left(\left(5x\right)^{2}\right)}
The way she explains it
you'll make 3 u's
Let
u
=
2
cos
(
u
)
{\displaystyle {\text{Let }}u=2\cos \left(u\right)}
Let
u
=
u
2
{\displaystyle {\text{Let }}u=u^{2}\,}
Let
u
=
5
x
{\displaystyle {\text{Let }}u=5x\,}
Find
d
y
d
x
{\displaystyle {\frac {dy}{dx}}\,}
then find
d
2
y
d
x
2
{\displaystyle {\frac {d^{2}y}{dx^{2}}}\,}
x
2
+
y
2
=
1
{\displaystyle x^{2}+y^{2}=1\,}
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑