This is an old revision of this page, as edited by Gogo Dodo (talk | contribs) at 22:57, 29 December 2009 (Revert to revision 334652689 dated 2009-12-29 01:55:58 by 208.58.67.121 using popups). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 22:57, 29 December 2009 by Gogo Dodo (talk | contribs) (Revert to revision 334652689 dated 2009-12-29 01:55:58 by 208.58.67.121 using popups)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) For other uses, see Science (disambiguation).Part of a series on |
Science |
---|
General |
Branches |
In society |
Science (from the Latin scientia, meaning "knowledge") is, in its broadest sense, any systematic knowledge-base or prescriptive practice that is capable of resulting in a prediction or predictable type of outcome. In this sense, science may refer to a highly skilled technique or practice.
In its more restricted contemporary sense, science refers to a system of acquiring knowledge based on the scientific method, and to the organized body of knowledge gained through such research. This article focuses on the more restricted use of the word. Science as discussed in this article is sometimes called experimental science to differentiate it from applied science, which is the application of scientific research to specific human needs—although the two are commonly interconnected.
Science is a continuing effort to discover and increase human knowledge and understanding through disciplined research. Using controlled methods, scientists collect observable evidence of natural or social phenomena, record measurable data relating to the observations, and analyze this information to construct theoretical explanations of how things work. The methods of scientific research include the generation of hypotheses about how phenomena work, and experimentation that tests these hypotheses under controlled conditions. Scientists are also expected to publish their information so other scientists can do similar experiments to double-check their conclusions. The results of this process enable better understanding of past events, and better ability to predict future events of the same kind as those that have been tested.
The ability of the general population to understand the basic concepts related to science is referred to as scientific literacy.
Basic classifications
Scientific fields are commonly divided into two major groups: natural sciences, which study natural phenomena (including biological life), and social sciences, which study human behavior and societies. These groupings are empirical sciences, which means the knowledge must be based on observable phenomena and capable of being tested for its validity by other researchers working under the same conditions. There are also related disciplines that are grouped into interdisciplinary and applied sciences, such as engineering and health science. Within these categories are specialized scientific fields that can include elements of other scientific disciplines but often possess their own terminology and body of expertise.
Mathematics, which is classified as a formal science, has both similarities and differences with the natural and social sciences. It is similar to empirical sciences in that it involves an objective, careful and systematic study of an area of knowledge; it is different because of its method of verifying its knowledge, using a priori rather than empirical methods. Formal science, which also includes statistics and logic, is vital to the empirical sciences. Major advances in formal science have often led to major advances in the empirical sciences. The formal sciences are essential in the formation of hypotheses, theories, and laws, both in discovering and describing how things work (natural sciences) and how people think and act (social sciences).
History and etymology
Main article: History of scienceWhile empirical investigations of the natural world have been described since antiquity (for example, by Aristotle, Theophrastus and Pliny the Elder), and scientific methods have been employed since the Middle Ages (for example, by Ibn al-Haytham, Abu Rayhan Biruni and Roger Bacon), the dawn of modern science is generally traced back to the early modern period during what is known as the Scientific Revolution of the 16th and 17th centuries.
The word "science" comes through the Old French, and is derived in turn from the Latin Error: {{Lang}}: text has italic markup (help), "knowledge", the nominal form of the verb Error: {{Lang}}: text has italic markup (help), "to know". The Proto-Indo-European (PIE) root that yields scire is *skei-, meaning to "cut, separate, or discern". Similarly, the Greek word for science is 'επιστήμη', deriving from the verb 'επίσταμαι', 'to know'. From the Middle Ages to the Enlightenment, science or scientia meant any systematic recorded knowledge. Science therefore had the same sort of very broad meaning that philosophy had at that time. In other languages, including French, Spanish, Portuguese, and Italian, the word corresponding to science also carries this meaning.
Prior to the 1700s, the preferred term for the study of nature was natural philosophy, while English speakers most typically referred to other philosophical disciplines (such as logic, metaphysics, epistemology, ethics and aesthetics) as moral philosophy. Today, "moral philosophy" is more-or-less synonymous with "ethics". Far into the 1700s, science and natural philosophy were not quite synonymous, but only became so later with the direct use of what would become known formally as the scientific method. By contrast, the word "science" in English was still used in the 17th century (1600s) to refer to the Aristotelian concept of knowledge which was secure enough to be used as a sure prescription for exactly how to do something. In this differing sense of the two words, the philosopher John Locke wrote disparagingly in 1690 that "natural philosophy is not capable of being made a science".
Locke was to be proven wrong, however. By the early 1800s, natural philosophy had begun to separate from philosophy, though it often retained a very broad meaning. In many cases, science continued to stand for reliable knowledge about any topic, in the same way it is still used in the broad sense (see the introduction to this article) in modern terms such as library science, political science, and computer science. In the more narrow sense of science, as natural philosophy became linked to an expanding set of well-defined laws (beginning with Galileo's laws, Kepler's laws, and Newton's laws for motion), it became more popular to refer to natural philosophy as natural science. Over the course of the nineteenth century, moreover, there was an increased tendency to associate science with study of the natural world (that is, the non-human world). This move sometimes left the study of human thought and society (what would come to be called social science) in a linguistic limbo by the end of the century and into the next.
Through the 1800s, many English speakers were increasingly differentiating science (i.e., the natural sciences) from all other forms of knowledge in a variety of ways. The now-familiar expression “scientific method,” which refers to the prescriptive part of how to make discoveries in natural philosophy, was almost unused until then, but became widespread after the 1870s, though there was rarely total agreement about just what it entailed. The word "scientist," meant to refer to a systematically-working natural philosopher, (as opposed to an intuitive or empirically-minded one) was coined in 1833 by William Whewell. Discussion of scientists as a special group of people who did science, even if their attributes were up for debate, grew in the last half of the 19th century. Whatever people actually meant by these terms at first, they ultimately depicted science, in the narrow sense of the habitual use of the scientific method and the knowledge derived from it, as something deeply distinguished from all other realms of human endeavor.
By the twentieth century (1900s), the modern notion of science as a special kind of knowledge about the world, practiced by a distinct group and pursued through a unique method, was essentially in place. It was used to give legitimacy to a variety of fields through such titles as "scientific" medicine, engineering, advertising, or motherhood. Over the 1900s, links between science and technology also grew increasingly strong.
Scientific method
Main article: Scientific methodA scientific method seeks to explain the events of nature in a reproducible way, and to use these reproductions to make useful predictions. It is done through observation of natural phenomena, and/or through experimentation that tries to simulate natural events under controlled conditions. It provides an objective process to find solutions to problems in a number of scientific and technological fields.
Based on observations of a phenomenon, a scientist may generate a model. This is an attempt to describe or depict the phenomenon in terms of a logical physical or mathematical representation. As empirical evidence is gathered, a scientist can suggest a hypothesis to explain the phenomenon. This description can be used to make predictions that are testable by experiment or observation using scientific method. When a hypothesis proves unsatisfactory, it is either modified or discarded.
While performing experiments, scientists may have a preference for one outcome over another, and it is important to ensure that this tendency does not bias their interpretation. A strict following of a scientific method attempts to minimize the influence of a scientist's bias on the outcome of an experiment. This can be achieved by correct experimental design, and a thorough peer review of the experimental results as well as conclusions of a study. After the results of an experiment are announced or published, it is normal practice for independent researchers to double-check how the research was performed, and to follow up by performing similar experiments to determine how dependable the results might be.
Once a hypothesis has survived testing, it may become adopted into the framework of a scientific theory. This is a logically reasoned, self-consistent model or framework for describing the behavior of certain natural phenomena. A theory typically describes the behavior of much broader sets of phenomena than a hypothesis—commonly, a large number of hypotheses can be logically bound together by a single theory. These broader theories may be formulated using principles such as parsimony (traditionally known as "Occam's Razor"). They are then repeatedly tested by analyzing how the collected evidence (facts) compares to the theory. When a theory survives a sufficiently large number of empirical observations, it then becomes a scientific generalization that can be taken as fully verified.
Unlike a mathematical proof, a scientific theory is empirical, and is always open to falsification if new evidence is presented. Even the most basic and fundamental theories may turn out to be imperfect if new observations are inconsistent with them. Critical to this process is making every relevant aspect of research publicly available, which allows ongoing review and repeating of experiments and observations by multiple researchers operating independently of one another. Only by fulfilling these expectations can it be determined how reliable the experimental results are for potential use by others.
Mathematics
Mathematics is essential to the sciences. One important function of mathematics in science is the role it plays in the expression of scientific models. Observing and collecting measurements, as well as hypothesizing and predicting, often require extensive use of mathematics. Arithmetic, algebra, geometry, trigonometry and calculus, for example, are all essential to physics. Virtually every branch of mathematics has applications in science, including "pure" areas such as number theory and topology.
Statistical methods, which are mathematical techniques for summarizing and analyzing data, allow scientists to assess the level of reliability and the range of variation in experimental results. Statistical analysis plays a fundamental role in many areas of both the natural sciences and social sciences.
Computational science applies computing power to simulate real-world situations, enabling a better understanding of scientific problems than formal mathematics alone can achieve. According to the Society for Industrial and Applied Mathematics, computation is now as important as theory and experiment in advancing scientific knowledge.
Whether mathematics itself is properly classified as science has been a matter of some debate. Some thinkers see mathematicians as scientists, regarding physical experiments as inessential or mathematical proofs as equivalent to experiments. Others do not see mathematics as a science, since it does not require an experimental test of its theories and hypotheses. Mathematical theorems and formulas are obtained by logical derivations which presume axiomatic systems, rather than the combination of empirical observation and logical reasoning that has come to be known as scientific method. In general, mathematics is classified as formal science, while natural and social sciences are classified as empirical sciences.
Scientific community
Main article: Scientific communityThe scientific community consists of the total body of scientists, its relationships and interactions. It is normally divided into "sub-communities" each working on a particular field within science.
Fields
Main article: Fields of scienceFields of science are widely-recognized categories of specialized expertise, and typically embody their own terminology and nomenclature. Each field will commonly be represented by one or more scientific journal, where peer reviewed research will be published.
Institutions
Learned societies for the communication and promotion of scientific thought and experimentation have existed since the Renaissance period. The oldest surviving institution is the Error: {{Lang}}: text has italic markup (help) in Italy. National Academy of Sciences are distinguished institutions that exist in a number of countries, beginning with the British Royal Society in 1660 and the French Error: {{Lang}}: text has italic markup (help) in 1666.
International scientific organizations, such as the International Council for Science, have since been formed to promote cooperation between the scientific communities of different nations. More recently, influential government agencies have been created to support scientific research, including the National Science Foundation in the U.S.
Other prominent organizations include the National Scientific and Technical Research Council in Argentina, the academies of science of many nations, CSIRO in Australia, Centre national de la recherche scientifique in France, Max Planck Society and Deutsche Forschungsgemeinschaft in Germany, and in Spain, CSIC.
The European Institute of Innovation and Technology
Regulation came into force on 29 April 2008. The EIT intends to be a new flagship research university for excellence in higher education, research and innovation. The initial concept for a European Institute of Technology was based on the example of the Massachusetts Institute of Technology ( MIT ) and its combination of world class education, research, and deep engagement in effective innovation processes.On 18 June 2008, Budapest, Hungary was chosen by the EU nations to host the headquarters of the institute.
The Governing Board of the European Institute of Innovation and Technology (EIT) met on 16 December in Budapest to designate the first three Knowledge and Innovation Communities (KICs).
Sustainable energy - Co-location centres : Karlsruhe,Krakow,Grenoble,Eindhoven/Leuven,Barcelona,Stockholm.
Climate Change Mitigation and Adaptation - Co-location centres : London,Zurich,Berlin metropolitan area,Paris metropolitan area,Randstad metropolitan area.
Future information and communication society - Co-location centres: Berlin, Eindhoven, Helsinki, Paris and Stockholm.
Literature
Main article: Scientific literatureAn enormous range of scientific literature is published. Scientific journals communicate and document the results of research carried out in universities and various other research institutions, serving as an archival record of science. The first scientific journals, Journal des Sçavans followed by the Philosophical Transactions, began publication in 1665. Since that time the total number of active periodicals has steadily increased. As of 1981, one estimate for the number of scientific and technical journals in publication was 11,500. Today Pubmed lists almost 40,000, related to the medical sciences only.
Most scientific journals cover a single scientific field and publish the research within that field; the research is normally expressed in the form of a scientific paper. Science has become so pervasive in modern societies that it is generally considered necessary to communicate the achievements, news, and ambitions of scientists to a wider populace.
Science magazines such as New Scientist, Science & Vie and Scientific American cater to the needs of a much wider readership and provide a non-technical summary of popular areas of research, including notable discoveries and advances in certain fields of research. Science books engage the interest of many more people. Tangentially, the science fiction genre, primarily fantastic in nature, engages the public imagination and transmits the ideas, if not the methods, of science.
Recent efforts to intensify or develop links between science and non-scientific disciplines such as Literature or, more specifically, Poetry, include the Creative Writing Science resource developed through the Royal Literary Fund.
Philosophy of science
Main article: Philosophy of scienceThe philosophy of science seeks to understand the nature and justification of scientific knowledge. It has proven difficult to provide a definitive account of scientific method that can decisively serve to distinguish science from non-science. Thus there are legitimate arguments about exactly where the borders are, which is known as the problem of demarcation. There is nonetheless a set of core precepts that have broad consensus among published philosophers of science and within the scientific community at large. For example, it is universally agreed that scientific hypotheses and theories must be capable of being independently tested and verified by other scientists in order to become accepted by the scientific community.
There are different schools of thought in the philosophy of scientific method. Methodological naturalism maintains that scientific investigation must adhere to empirical study and independent verification as a process for properly developing and evaluating natural explanations for observable phenomena. Methodological naturalism, therefore, rejects supernatural explanations, arguments from authority and biased observational studies. Critical rationalism instead holds that unbiased observation is not possible and a demarcation between natural and supernatural explanations is arbitrary; it instead proposes falsifiability as the landmark of empirical theories and falsification as the universal empirical method. Critical rationalism argues for the ability of science to increase the scope of testable knowledge, but at the same time against its authority, by emphasizing its inherent fallibility. It proposes that science should be content with the rational elimination of errors in its theories, not in seeking for their verification (such as claiming certain or probable proof or disproof; both the proposal and falsification of a theory are only of methodological, conjectural, and tentative character in critical rationalism). Instrumentalism rejects the concept of truth and emphasizes merely the utility of theories as instruments for explaining and predicting phenomena.
Another aspect is that philosophy is at least implicitly at the core of every decision made. The schools of philosophical thought determine what is a necessity for scientific inquiry to take place. For instance, there are basic philosophical assumptions implicit at the foundation of science - namely, 1) that reality is objective and consistent, 2) that humans have the capacity to perceive reality accurately, and 3) that rational explanations exist for elements of the real world. These assumptions are based in naturalism, critical rationalism, and instrumentalism, within which science is done. Biologist Stephen J. Gould maintained that certain philosophical propositions--i.e., 1) Uniformity of law and 2) uniformity of processes across time and space--must first be assumed before you can proceed as a scientist doing science. Gould summarized this view as follows: "You cannot go to a rocky outcrop and observe either the constancy of nature's laws nor the working of unknown processes. It works the other way around." You first assume these propositions and "then you go to the out crop of rock."
Pseudoscience, fringe science, and junk science
Main articles: Pseudoscience, Fringe science, Junk science, Cargo cult science, and Scientific misconductAn area of study or speculation that masquerades as science in an attempt to claim a legitimacy that it would not otherwise be able to achieve is sometimes referred to as pseudoscience, fringe science, or "alternative science". Another term, junk science, is often used to describe scientific hypotheses or conclusions which, while perhaps legitimate in themselves, are believed to be used to support a position that is seen as not legitimately justified by the totality of evidence. A variety of commercial advertising, ranging from hype to fraud, may fall into this category. There also can be an element of political or ideological bias on all sides of such debates. Sometimes, research may be characterized as "bad science", research that is well-intentioned but is seen as incorrect, obsolete, incomplete, or over-simplified expositions of scientific ideas. The term "scientific misconduct" refers to situations such as where researchers have intentionally misrepresented their published data or have purposely given credit for a discovery to the wrong person.
Critiques
Philosophical critiques
Historian Jacques Barzun termed science "a faith as fanatical as any in history" and warned against the use of scientific thought to suppress considerations of meaning as integral to human existence. Many recent thinkers, such as Carolyn Merchant, Theodor Adorno and E. F. Schumacher considered that the 17th century scientific revolution shifted science from a focus on understanding nature, or wisdom, to a focus on manipulating nature, i.e. power, and that science's emphasis on manipulating nature leads it inevitably to manipulate people, as well. Science's focus on quantitative measures has led to critiques that it is unable to recognize important qualitative aspects of the world.
Philosopher of science Paul K Feyerabend advanced the idea of epistemological anarchism, which holds that there are no useful and exception-free methodological rules governing the progress of science or the growth of knowledge, and that the idea that science can or should operate according to universal and fixed rules is unrealistic, pernicious and detrimental to science itself.. Feyerabend advocates treating science as an ideology alongside others such as religion, magic and mythology, and considers the dominance of science in society authoritarian and unjustified.. He also contended (along with Imre Lakatos) that the demarcation problem of distinguishing science from pseudoscience on objective grounds is not possible and thus fatal to the notion of science running according to fixed, universal rules.
Professor Stanley Aronowitz scrutinizes science for operating with the presumption that the only acceptable criticisms of science are those conducted within the methodological framework that science has set up for itself. That science insists that only those who have been inducted into its community, through means of training and credentials, are qualified to make these criticisms. Aronowitz also alleges that while scientists consider it absurd that Fundamentalist Christianity uses biblical references to bolster their claim that the bible is true, scientists pull the same tactic by using the tools of science to settle disputes concerning its own validity.
Psychologist Carl Jung believed that though science attempted to understand all of nature, the experimental method imposed artificial and conditional questions that evoke equally artificial answers. Jung encouraged, instead of these 'artificial' methods, empirically testing the world in a holistic manner. David Parkin compared the epistemological stance of science to that of divination. He suggested that, to the degree that divination is an epistemologically specific means of gaining insight into a given question, science itself can be considered a form of divination that is framed from a Western view of the nature (and thus possible applications) of knowledge.
Philosopher Alan Watts criticized science for operating under a materialist model of the world that he posited is simply a modified version of the Abrahamic worldview, that "the universe is constructed and maintained by a Lawmaker" (commonly identified as God or the Logos). Watts asserts that during the rise of secularism through the 18th to 20th century when scientific philosophers got rid of the notion of a lawmaker they kept the notion of law, and that the idea that the world is a material machine run by law is a presumption just as unscientific as religious doctrines that affirm it is a material machine made and run by a lawmaker.
Philosopher and polymath Robert Anton Wilson stated that the instruments used in scientific investigation produce meaningful answers relevant only to the instrument, and that there is no objective vantage point from which science could verify its findings since all findings are relative to begin with. He also was critical of the scientific community for being funded largely in part by the military industrial complex and claimed that because of their strong association with one another that research and results might be geared towards the expectations or wants of the military (or whoever is doing the funding). Because of this, he suggests that the results of scientists could in fact be tainted by the prejudices of their research sponsors, and are not entirely scientific.
Several academics have offered critiques concerning ethics in science. In Science and Ethics, for example, the philosopher Bernard Rollin examines the relevance of ethics to science, and argues in favor of making education in ethics part and parcel of scientific training.
Media perspectives
The mass media face a number of pressures that can prevent them from accurately depicting competing scientific claims in terms of their credibility within the scientific community as a whole. Determining how much weight to give different sides in a scientific debate requires considerable expertise regarding the matter. Few journalists have real scientific knowledge, and even beat reporters who know a great deal about certain scientific issues may know little about other ones they are suddenly asked to cover.
Politics
Many issues damage the relationship of science to the media and the use of science and scientific arguments by politicians. As a very broad generalisation, many politicians seek certainties and facts whilst scientists typically offer probabilities and caveats. However, politicians' ability to be heard in the mass media frequently distorts the scientific understanding by the public. Examples in Britain include the controversy over the MMR inoculation, and the 1988 forced resignation of a Government Minister, Edwina Currie for revealing the high probability that battery eggs were contaminated with Salmonella.
See also
Main article: Outline of scienceNotes
- "Online dictionary". Merriam-Webster. Retrieved 2009-05-22.
a department of systematized knowledge as an object of study<the science of theology> . . . something (as a sport or technique) that may be studied or learned like systematized knowledge <have it down to a science> . . . a system or method reconciling practical ends with scientific laws <cooking is both a science and an art>
- "Online dictionary". Merriam-Webster. Retrieved 2009-05-22.
knowledge or a system of knowledge covering general truths or the operation of general laws especially as obtained and tested through scientific method . . . such knowledge or such a system of knowledge concerned with the physical world and its phenomena
- ^ Popper, Karl (2002) . The Logic of Scientific Discovery (2nd English ed.). New York, NY: Routledge Classics. p. 3. ISBN 0-415-27844-9. OCLC 59377149. Cite error: The named reference "Popper" was defined multiple times with different content (see the help page).
- See: Editorial Staff (March 7, 2008). "Scientific Method: Relationships among Scientific Paradigms". Seed magazine. Retrieved 2007-09-12.
- "The Scientific Revolution". Washington State University
- Etymology of "science" at Etymology Online. See also details of the PIE root at American Heritage Dictionary of the English Language, 4th edition, 2000..
- MacMorris, Neville (1989). The Natures of Science. New York: Fairleigh Dickinson University Press. pp. 31–33. ISBN 0838633218.
- Locke, J. (1838). An Essay Concerning Human Understanding. Printed by Thomas Davison. ISBN 0140434828.An Essay Concerning Human Understanding
- ^ Thurs, Daniel Patrick (2007). Science Talk: Changing Notions of Science in American Popular Culture. New Brunswick, NJ: Rutgers University Press. ISBN 978-0813540733. OCLC 170031241.
- Ross, S. (1962). "Scientist: The story of a word" (PDF). Annals of Science. 18 (2): 65–85. doi:10.1080/00033796200202722. Retrieved 2008-02-08.
- Backer, Patricia Ryaby (October 29, 2004). "What is the scientific method?". San Jose State University. Retrieved 2008-03-28.
- van Gelder, Tim (1999). ""Heads I win, tails you lose": A Foray Into the Psychology of Philosophy" (PDF). University of Melbourne. Retrieved 2008-03-28.
- Pease, Craig (September 6, 2006). "Chapter 23. Deliberate bias: Conflict creates bad science". Science for Business, Law and Journalism. Vermont Law School. Retrieved 2008-03-28.
- Shatz, David (2004). Peer Review: A Critical Inquiry. Rowman & Littlefield. ISBN 074251434X. OCLC 54989960.
- Krimsky, Sheldon (2003). Science in the Private Interest: Has the Lure of Profits Corrupted the Virtue of Biomedical Research. Rowman & Littlefield. ISBN 074251479X. OCLC 185926306.
- Bulger, Ruth Ellen (2002). The Ethical Dimensions of the Biological and Health Sciences (2nd ed.). Cambridge University Press. ISBN 0521008867. OCLC 47791316.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Graduate Education for Computational Science and Engineering, SIAM Working Group on CSE Education. Retrieved 2008-04-27.
- Bunge, Mario Augusto (1998). Philosophy of Science: From Problem to Theory. Transaction Publishers. p. 24. ISBN 0-765-80413-1.
- Parrott, Jim (August 9, 2007). "Chronicle for Societies Founded from 1323 to 1599". Scholarly Societies Project. Retrieved 2007-09-11.
- "Benvenuto nel sito dell'Accademia Nazionale dei Lincei" (in Italian). Accademia Nazionale dei Lincei. 2006. Retrieved 2007-09-11.
- "Brief history of the Society". The Royal Society. Retrieved 2007-09-11.
- Meynell, G.G. "The French Academy of Sciences, 1666-91: A reassessment of the French Académie royale des sciences under Colbert (1666-83) and Louvois (1683-91)". Topics in Scientific & Medical History. Retrieved 2007-09-11.
- http://eit.europa.eu/fileadmin/Content/Downloads/PDF/news_items/Summary_InnoEnergy.pdf
- http://eit.europa.eu/fileadmin/Content/Downloads/PDF/news_items/Summary_Climate-KIC.pdf
- http://eit.europa.eu/fileadmin/Content/Downloads/PDF/news_items/Summary_EIT_ICT_Labs.pdf
- Ziman, Bhadriraju (1980). "The proliferation of scientific literature: a natural process". Science. 208 (4442): 369–371. doi:10.1126/science.7367863. PMID 7367863.
- Subramanyam, Krishna (1981). Scientific and Technical Information Resources. CRC Press. ISBN 0824782976. OCLC 232950234.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ftp://ftp.ncbi.nih.gov/pubmed/J_Entrez.txt
- Petrucci, Mario. "Creative Writing <-> Science". Retrieved 2008-04-27.
- Brugger, E. Christian (2004). "Casebeer, William D. Natural Ethical Facts: Evolution, Connectionism, and Moral Cognition". The Review of Metaphysics. 58 (2).
- Popper, Karl (2002). Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge. ISBN 0061313769.
- Newton-Smith, W. H. (1994). The Rationality of Science. London: Routledge. p. 30. ISBN 0710009135.
- ^ A., Kate (2000). "Evolution and Philosophy: Science and Philosophy". Think Quest. Retrieved 19 January 2009.
{{cite web}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Gould, Stephen J (1987). Time's Arrow, Time's Cycle: Myth and Metaphor in the Discovery of Geological Time. Cambridge, MA: Harvard University Press. p. 120. ISBN 0674891988.
- Jacques Barzun, Science: The Glorious Entertainment, Harper and Row: 1964. p. 15. (quote) and Chapters II and XII.
- ^ Fritjof Capra, Uncommon Wisdom, ISBN 0-671-47322-0, p. 213
- ^ Feyerabend, Paul (1993). Against Method. London: Verso. ISBN 9780860916468.
- Aronowitz, Stanley (1988). Science As Power: Discourse and Ideology in Modern Society. University of Minnesota Press. p. viii (preface). ISBN 0816616590.
- Stanley Aronowitz in conversation with Derrick Jensen in Jensen, Derrick (2004). Welcome to the Machine: Science, Surveillance, and the Culture of Control. Chelsea Green Publishing Company. p. 31. ISBN 1931498520.
- Jung, Carl (1973). Synchronicity: An Acausal Connecting Principle. Princeton University Press. p. 35. ISBN 0691017948.
- Parkin 1991 "Simultaneity and Sequencing in the Oracular Speech of Kenyan Diviners", p. 185.
- Alan Watts Audio lecture "Myth and Religion: Image of Man" and "Out Of Your Mind, 1: The Nature of Consciousness: 'Our image of the world' and 'The myth of the automatic universe'"
- Anton Wilson, Robert (1999). The New Inquisition. New Falcon Publications. p. 4. ISBN 1-56184-002-5.
- Ibid, pg 20
- Ibid, pg 92
- Rollin, Bernard E. (2006). Science and Ethics. Cambridge University Press. ISBN 0521857546. OCLC 238793190.
- Dickson, David (October 11, 2004). "Science journalism must keep a critical edge". Science and Development Network. Retrieved 2008-02-20.
- Mooney, Chris (2007). "Blinded By Science, How 'Balanced' Coverage Lets the Scientific Fringe Hijack Reality". Columbia Journalism Review. Retrieved 2008-02-20.
- McIlwaine, S. (2005). "Are Journalism Students Equipped to Write About Science?". Australian Studies in Journalism. 14: 41–60. Retrieved 2008-02-20.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - "1988: Egg industry fury over salmonella claim", "On This Day," BBC News, December 3, 1988.
References
- Feyerabend, Paul (2005). Science, history of the philosophy, as cited in Honderich, Ted (2005). The Oxford companion to philosophy. Oxford Oxfordshire: Oxford University Press. ISBN 0199264791. OCLC 173262485. of. Oxford Companion to Philosophy. Oxford.
- Feynman, R.P. (1999). The Pleasure of Finding Things Out: The Best Short Works of Richard P. Feynman. Perseus Books Group. ISBN 0465023959. OCLC 181597764.
- Papineau, David. (2005). Science, problems of the philosophy of., as cited in Honderich, Ted (2005). The Oxford companion to philosophy. Oxford Oxfordshire: Oxford University Press. ISBN 0199264791. OCLC 173262485.
- Parkin, D (1991). "Simultaneity and Sequencing in the Oracular Speech of Kenyan Diviners". In Philip M. Peek (ed.). African Divination Systems: Ways of Knowing. Indianapolis, IN: Indiana University Press..
Further reading
- Augros, Robert M., Stanciu, George N., "The New Story of Science: mind and the universe", Lake Bluff, Ill.: Regnery Gateway, c1984. ISBN 0895268337
- Baxter, Charles Template:PDFlink
- Becker, Ernest (1968). The structure of evil; an essay on the unification of the science of man. New York: G. Braziller.
- Cole, K. C., Things your teacher never told you about science: Nine shocking revelations Newsday, Long Island, New York, March 23, 1986, pg 21+
- Feynman, Richard "Cargo Cult Science"
- Gopnik, Alison, "Finding Our Inner Scientist", Daedalus, Winter 2004.
- Krige, John, and Dominique Pestre, eds., Science in the Twentieth Century, Routledge 2003, ISBN 0-415-28606-9
- Kuhn, Thomas, The Structure of Scientific Revolutions, 1962.
- MacComas, William F. Template:PDFlink Rossier School of Education, University of Southern California. Direct Instruction News. Spring 2002 24–30.
- Obler, Paul C. (1962). The New Scientist: Essays on the Methods and Values of Modern Science. Anchor Books, Doubleday.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Thurs, Daniel Patrick (2007). Science Talk: Changing Notions of Science in American Popular Culture. New Brunswick, NJ: Rutgers University Press. pp. 22–52. ISBN 978-0-8135-4073-3.
- Levin, Yuval (2008). Imagining the Future: Science and American Democracy. New York, Encounter Books. ISBN 1594032092
External links
Publications
- "GCSE Science textbook". Wikibooks.org
News
- Current Events. New Scientist Magazine, Reed Business Information, Ltd.
- ScienceDaily
- Discover Magazine
- Irish Science News from Discover Science & Engineering
Resources
- Euroscience:
- Euroscience Open Forum (ESOF)
- Science Council
- Science Development in the Latin American docta
- Classification of the Sciences Dictionary of the History of Ideas
- "Nature of Science" University of California Museum of Paleontology
- United States Science Initiative. Selected science information provided by U.S. Government agencies, including research and development results.
Template:Link FA Template:Link FA
Category: