Misplaced Pages

Methamphetamine

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by MarcS222 (talk | contribs) at 18:37, 3 February 2011. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 18:37, 3 February 2011 by MarcS222 (talk | contribs)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Template:Redirect4

This article is about the psychostimulant drug, methamphetamine, in both racemic and dextrorotatory forms. For the CNS inactive OTC nasal decongestant, see levomethamphetamine. Pharmaceutical compound
Methamphetamine
Clinical data
Other namesDesoxyephedrine
Pervitin
Anadrex
Methedrine
Methylamphetamine
Syndrox
Desoxyn
Routes of
administration
Medical: Oral
Recreational: Oral, I.V., I.M., Insufflation, Inhalation, Rectal
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability62.7% oral; 79% nasal; 90.3% smoked; 99% rectally; 100% IV
MetabolismHepatic
Elimination half-life9–12 hours
ExcretionRenal
Identifiers
IUPAC name
  • N-methyl-1-phenylpropan-2-amine
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.007.882 Edit this at Wikidata
Chemical and physical data
FormulaC10H15N
Molar mass149.233 g/mol g·mol
3D model (JSmol)
SMILES
  • N(C(Cc1ccccc1)C)C
InChI
  • InChI=1S/C10H15N/c1-9(11-2)8-10-6-4-3-5-7-10/h3-7,9,11H,8H2,1-2H3
  • Key:MYWUZJCMWCOHBA-UHFFFAOYSA-N
  (what is this?)  (verify)

Methamphetamine (Template:Pron-en listen), also known as metamfetamine (INN for the (+) form), methylamphetamine, N-methylamphetamine, desoxyephedrine, and colloquially as "meth" or "crystal meth", is a psychostimulant of the phenethylamine and amphetamine class of drugs. It increases alertness, concentration, energy, and in high doses, can induce euphoria, enhance self-esteem, and increase libido. Methamphetamine has high potential for abuse and addiction by activating the psychological reward system via triggering a cascading release of dopamine, norepinephrine and serotonin in the brain. Methamphetamine is FDA approved for the treatment of ADHD and exogenous obesity, marketed in the USA under the trademark name Desoxyn.

Methamphetamine is illicitly synthesized and then sold in a crystalline form resembling small shards of odorless, bitter-tasting crystals; leading to the colloquial nickname "crystal meth". Following a period of heavy use, also known as "binging", which typically last days or even weeks, a severe withdrawal syndrome lasting up to 10 days can occur, primarily consisting of depression, fatigue, excessive sleeping and an increased appetite. Chronic methamphetamine abuse may result in prolonged psychiatric disorders, cognitive impairment, as well as an increased risk of developing Parkinson's disease.

As a result of methamphetamine-induced neurotoxicity to dopaminergic neurons, chronic abuse may also lead to withdrawal symptoms which persist beyond the withdrawal period for months, and even up to a year. Research has found that 20% of methamphetamine addicts experience a psychosis resembling schizophrenia which persists for longer than six months post-methamphetamine use; this amphetamine psychosis can be resistant to traditional treatment. In addition to psychological harm, physical harm, primarily consisting of cardiovascular damage, may occur with chronic abuse or acute overdose.

History

Crystal methamphetamine was first synthesized in 1919 by Akira Ogata.

Methamphetamine was first synthesized from ephedrine in Japan in 1893 by chemist Nagai Nagayoshi. The term "methamphetamine" was derived from elements of the chemical structure of this new compound: methyl alpha-methylphenylethylamine.In 1919, crystallized methamphetamine was synthesized by Akira Ogata via reduction of ephedrine using red phosphorus and iodine. In 1943, Abbott Laboratories requested for its approval from the U.S. Food and Drug Administration (FDA) for the treatment of narcolepsy, mild depression, postencephalitic parkinsonism, chronic alcoholism, cerebral arteriosclerosis, and hay fever. Methamphetamine was approved for all of these indications in December, 1944. All of these indication approvals were eventually removed. The only two approved marketing indications remaining for methamphetamine are for attention-deficit hyperactivity disorder (ADHD) and the short-term management of exogenous obesity, although the drug is clinically established as effective in the treatment of narcolepsy.

World War II

One of the earliest uses of methamphetamine was during World War II, when it was used by Axis and Allied forces. The German military dispensed it under the trademark name Pervitin. It was widely distributed across rank and division, from elite forces to tank crews and aircraft personnel, with many millions of tablets being distributed throughout the war. From 1942 until his death in 1945, Adolf Hitler may have been given intravenous injections of methamphetamine by his personal physician Theodor Morell. It is possible that it was used to treat Hitler's speculated Parkinson's disease, or that his Parkinson-like symptoms that developed from 1940 onwards resulted from using methamphetamine. In Japan, methamphetamine was sold under the registered trademark of Philopon (ヒロポン, hiropon) by Dainippon Sumitomo Pharma for civilian and military use. Similar to the rest of the world, the side effects of methamphetamine were not well studied, and regulation was not seen as necessary.

Post-war usage

After World War II, a large Japanese military stockpile of methamphetamine, known by its trademark Philopon, flooded the market. The Japanese Ministry of Health banned it in 1951; since then, it has been increasingly produced by the Yakuza criminal organization. On the streets, it is also known as S, Shabu, and Speed, in addition to its old trademarked name. In the 1950s, there was a rise in the legal prescription of methamphetamine to the American public. In the 1954 edition of Pharmacology and Therapeutics, indications for methamphetamine included "narcolepsy, postencephalitic parkinsonism, alcoholism, certain depressive states, and in the treatment of obesity." The 1960s saw the start of significant use of clandestinely manufactured methamphetamine as well as methamphetamine created in users' own homes for personal use. The recreational use of methamphetamine continues to this day.

Legal restrictions

File:Meth lab.jpg
Trash left from an illegal meth lab. Meth lab waste is extremely hazardous and toxic waste cleanup is a major problem for authorities and property owners. Common waste includes brake cleaner, ammonia, soda bottles, kitty litter, lithium batteries, engine starter, matches, and pseudoephedrine blister packs.


In 1983, laws were passed in the United States prohibiting possession of precursors and equipment for methamphetamine production. This was followed a month later by a bill passed in Canada enacting similar laws. In 1986, the U.S. government passed the Federal Controlled Substance Analogue Enforcement Act in an attempt to curb the growing use of designer drugs. Despite this, use of methamphetamine expanded throughout rural United States, especially through the Midwest and South.

Since 1989, five U.S. federal laws and dozens of state laws have been imposed in an attempt to curb the production of methamphetamine. Methamphetamine can be produced in home laboratories using pseudoephedrine or ephedrine, which, at the time, were the active ingredients in over-the-counter drugs such as Sudafed and Contac. Preventive legal strategies of the past 17 years have steadily increased restrictions to the distribution of pseudoephedrine/ephedrine-containing products.

As a result of the U.S. Combat Methamphetamine Epidemic Act of 2005, a subsection of the USA PATRIOT Act, there are restrictions on the amount of pseudoephedrine and ephedrine one may purchase in a specified time period and further requirements that these products must be stored in order to prevent theft. Increasingly strict restrictions have resulted in the reformulation of many over-the-counter drugs, and some, such as Actifed, have been discontinued entirely in the United States.

Pharmacology

A member of the family of phenethylamines, methamphetamine is chiral, with two isomers, levorotary and dextrorotatory. The levorotary form, called levomethamphetamine, is an over-the-counter drug used in inhalers for nasal decongestion. Levomethamphetamine does not possess any significant central nervous system activity or addictive properties. This article deals only with the dextrorotatory form, called dextromethamphetamine, and the racemic form.

Methamphetamine is a potent central nervous system stimulant that affects neurochemical mechanisms responsible for regulating heart rate, body temperature, blood pressure, appetite, attention, mood and emotional responses associated with alertness or alarming conditions. The acute physical effects of the drug closely resemble the physiological and psychological effects of an epinephrine-provoked fight-or-flight response, including increased heart rate and blood pressure, vasoconstriction (constriction of the arterial walls), bronchodilation, and hyperglycemia (increased blood sugar). Users experience an increase in focus, increased mental alertness, and the elimination of fatigue, as well as a decrease in appetite.

The methyl group is responsible for the potentiation of effects as compared to the related compound amphetamine, rendering the substance on the one hand more lipid-soluble, enhancing transport across the blood-brain barrier, and on the other hand more stable against enzymatic degradation by monoamine oxidase (MAO). Methamphetamine causes the norepinephrine, dopamine, and serotonin (5HT) transporters to reverse their direction of flow. This inversion leads to a release of these transmitters from the vesicles to the cytoplasm and from the cytoplasm to the synapse (releasing monoamines in rats with ratios of about NE:DA = 1:2, NE:5HT= 1:60), causing increased stimulation of post-synaptic receptors. Methamphetamine also indirectly prevents the reuptake of these neurotransmitters, causing them to remain in the synaptic cleft for a prolonged period (inhibiting monoamine reuptake in rats with ratios of about: NE:DA = 1:2.35, NE:5HT = 1:44.5).

File:Methamphetamine2.png
Ball-and-stick model of methamphetamine

Methamphetamine is a potent neurotoxin, shown to cause dopaminergic degeneration. High doses of methamphetamine produce losses in several markers of brain dopamine and serotonin neurons. Dopamine and serotonin concentrations, dopamine and 5HT uptake sites, and tyrosine and tryptophan hydroxylase activities are reduced after the administration of methamphetamine. It has been proposed that dopamine plays a role in methamphetamine-induced neurotoxicity, because experiments that reduce dopamine production or block the release of dopamine decrease the toxic effects of methamphetamine administration. When dopamine breaks down, it produces reactive oxygen species such as hydrogen peroxide.

It is likely that the approximate twelvefold increase in dopamine levels and subsequent oxidative stress that occurs after taking methamphetamine mediates its neurotoxicity.

Recent research published in the Journal of Pharmacology And Experimental Therapeutics (2007) indicates that methamphetamine binds to and activates a G protein-coupled receptor called TAAR1. TAARs are a newly discovered receptor family whose members are activated by a number of amphetamine-like molecules called trace amines, thyronamines, and certain volatile odorants.

It has been demonstrated that a high ambient temperature increases the neurotoxic effects of methamphetamine.

Effects

Physical effects

Physical effects can include anorexia, hyperactivity, dilated pupils, flushing, restlessness, dry mouth, headache, tachycardia, bradycardia, tachypnea, hypertension, hypotension, hyperthermia, diaphoresis, diarrhea, constipation, blurred vision, dizziness, twitching, insomnia, numbness, palpitations, arrhythmias, tremors, dry and/or itchy skin, acne, pallor, and with chronic and/or high doses, convulsions, heart attack, stroke, and death.

Psychological effects

Psychological effects can include euphoria, anxiety, increased libido, alertness, concentration, energy, self-esteem, self-confidence, sociability, irritability, aggression, psychosomatic disorders, psychomotor agitation, grandiosity, hallucinations, excessive feelings of power and invincibility, repetitive and obsessive behaviors, paranoia, and with chronic and/or high doses, amphetamine psychosis can occur.

Withdrawal effects

Withdrawal symptoms of methamphetamine primarily consist of fatigue, depression and an increased appetite. Symptoms may last for days with occasional use and weeks or months with chronic use, with severity dependent on the length of time and the amount of methamphetamine used. Withdrawal symptoms may also include anxiety, agitation, akathisia, excessive sleeping, vivid or lucid dreams, deep REM sleep and suicidal ideation.

Long-term effects

Methamphetamine use has a high association with depression and suicide as well as serious heart disease, amphetamine psychosis, anxiety and violent behaviours. Methamphetamine also has a very high addiction risk. Methamphetamine also is neurotoxic and is associated with an increased risk of Parkinson's disease. Methamphetamine abuse can cause neurotoxicity which is believed to be responsible for causing persisting cognitive deficits, such as memory, impaired attention and executive function. Over 20 percent of people addicted to methamphetamine develop a long-lasting psychosis resembling schizophrenia after stopping methamphetamine which persists for longer than 6 months and is often treatment resistant.

Pharmacokinetics

Following oral administration, methamphetamine is readily absorbed with peak methamphetamine concentrations occurring in 3.13 to 6.3 hours post ingestion. The amphetamine metabolite peaks at 10 to 24 hours. Methamphetamine is also well absorbed following inhalation and following intranasal administration. It is distributed to most parts of the body. Because methamphetamine has a high lipophilicity it is distributed across the blood brain barrier and crosses the placenta.

Methamphetamine is metabolized in the liver with the main metabolites being amphetamine (active) and 4-hydroxymethamphetamine; other minor metabolites include 4-hydroxyamphetamine, norephedrine, and 4-hydroxynorephedrine. Other drugs metabolized to amphetamine and methamphetamine include benzphetamine, furfenorex, and famprofazone. Selegiline (marketed as Deprenyl, EMSAM, and others) is metabolized into the less active L-isomer of amphetamine and the inactive L-isomer of methamphetamine. Although only the D-Isomer of selegiline will metabolize into active metabolites, both isomers may cause a positive result for methamphetamine and amphetamine on a drug test, in certain cases.

It is excreted by the kidneys, with the rate of excretion into the urine heavily influenced by urinary pH. Between 30-54% of an oral dose is excreted in urine as unchanged methamphetamine and 10-23% as unchanged amphetamine. Following an intravenous dose, 45% is excreted as unchanged parent drug and 7% amphetamine. The half-life of methamphetamine is variable with a mean value of between 9 and 12 hours.

Detection in biological fluids

Methamphetamine and amphetamine are often measured in urine, sweat or saliva as part of a drug-abuse testing program, in plasma or serum to confirm a diagnosis of poisoning in hospitalized victims, or in whole blood to assist in a forensic investigation of a traffic or other criminal violation or a case of sudden death. Chiral techniques may be employed to help distinguish the source of the drug, whether obtained legally (via prescription) or illicitly, or possibly as a result of formation from a prodrug such as famprofazone or selegiline. Chiral separation is needed to assess the possible contribution of l-methamphetamine (Vicks Inhaler) toward a positive test result.

Tolerance

As with other amphetamines, tolerance to methamphetamine is not completely understood but known to be sufficiently complex that it cannot be explained by any single mechanism. The extent of tolerance and the rate at which it develops vary widely between individuals, and, even within one person, it is highly dependent on dosage, duration of use, and frequency of administration. Tolerance to the awakening effect of amphetamines does not readily develop, making them suitable for the treatment of narcolepsy.

Short-term tolerance can be caused by depleted levels of neurotransmitters within the synaptic vesicles available for release into the synaptic cleft following subsequent reuse (tachyphylaxis). Short-term tolerance typically lasts until neurotransmitter levels are fully replenished; because of the toxic effects on dopaminergic neurons, this can be greater than 2–3 days. Prolonged overstimulation of dopamine receptors caused by methamphetamine may eventually cause the receptors to downregulate in order to compensate for increased levels of dopamine within the synaptic cleft. To compensate, larger quantities of the drug are needed in order to achieve the same level of effects.

Reverse tolerance or sensitization can also occur. The effect is well established, but the mechanism is not well understood.

Addiction

Using whole body imaging, officers at Los Angeles International discovered a pound of methamphetamine on a passenger.

Methamphetamine is addictive. While the withdrawal itself may not be dangerous, withdrawal symptoms are common with heavy use and relapse is common.

Methamphetamine-induced hyperstimulation of pleasure pathways leads to anhedonia. It is possible that daily administration of the amino acids L-Tyrosine and L-5HTP/Tryptophan can aid in the recovery process by making it easier for the body to reverse the depletion of dopamine, norepinephrine, and serotonin. Although studies involving the use of these amino acids have shown some success, this method of recovery has not been shown to be consistently effective.

It is shown that taking ascorbic acid prior to using methamphetamine may help reduce acute toxicity to the brain, as rats given the human equivalent of 5–10 grams of ascorbic acid 30 minutes prior to methamphetamine dosage had toxicity mediated, yet this will likely be of little avail in solving the other serious behavioral problems associated with methamphetamine use and addiction that many users experience. Large doses of ascorbic acid also lower urinary pH, reducing methamphetamine's elimination half-life and thus decreasing the duration of its actions.

To combat addiction, doctors are beginning to use other forms of stimulants such as dextroamphetamine, the dextrorotatory (right-handed) isomer of the amphetamine molecule, to break the addiction cycle in a method similar to the use of methadone in the treatment of heroin addicts. There are no publicly available drugs comparable to naloxone, which blocks opiate receptors and is therefore used in treating opiate dependence, for use with methamphetamine problems. However, experiments with some monoamine reuptake inhibitors such as indatraline have been successful in blocking the action of methamphetamine. There are studies indicating that fluoxetine, bupropion and imipramine may reduce craving and improve adherence to treatment. Research has also suggested that modafinil can help addicts quit methamphetamine use.

Methamphetamine addiction is one of the most difficult forms of addictions to treat. Bupropion, aripiprazole, and baclofen have been employed to treat post-withdrawal cravings, although the success rate is low. Modafinil is somewhat more successful, but this is a Class IV scheduled drug. Ibogaine has been used with success in Europe, where it is a Class I drug and available only for scientific research. Mirtazapine has been reported useful in some small-population studies.

As the phenethylamine phentermine is a constitutional isomer of methamphetamine, it has been suggested that it may be effective in treating methamphetamine addiction. Phentermine is a central nervous system stimulant that acts on dopamine and norepinephrine. When comparing (+)-Amphetamine, (+/-)-ephedrine, and phentermine, one key difference among the three drugs is their selectivity for norepinephrine (NE) release vs. dopamine (DA) release. The NE/DA selectivity ratios for these drugs as determined in vitro are (+/-)-ephedrine (18.6) > phentermine (6.7) > (+)-amphetamine (3.5).

Abrupt interruption of chronic methamphetamine use results in the withdrawal syndrome in almost 90% of the cases.

The mental depression associated with methamphetamine withdrawal lasts longer and is more severe than that of cocaine withdrawal.

Medical use

Desoxyn 10 mg tablets (US)

Methamphetamine has been FDA approved for use in children and adults under the trade name Desoxyn for the treatment of ADHD and exogenous obesity, as well as off-label for the treatment of narcolepsy and treatment-resistant depression. Methamphetamine is known to produce central effects similar to the other stimulants, but at smaller doses, with fewer peripheral effects. Methamphetamine's fat solubility also allows it to enter the brain faster than other stimulants, where it is more stable against degradation by monoamine oxidase (MAO).

Investigational use

A 2006 study by a group of University of Montana scientists showed that methamphetamine appears to lessen damage to the brains of rats and gerbils that have suffered strokes. Their preliminary research has found that small amounts of methamphetamine created a protective effect, while higher doses increased damage. The findings have shown that methamphetamine could be used medically to lessen stroke damage.

Health issues

Meth mouth

Main article: Meth mouth

Methamphetamine users and addicts may lose their teeth abnormally quickly, a condition informally known as meth mouth. According to the American Dental Association, meth mouth "is probably caused by a combination of drug-induced psychological and physiological changes resulting in xerostomia (dry mouth), extended periods of poor oral hygiene, frequent consumption of high-calorie, carbonated beverages and bruxism (teeth grinding and clenching). Some reports have also speculated that the caustic nature of the drug is a contributing factor. Similar, though far less severe, symptoms have been reported in clinical use of regular amphetamine, where effects are not exacerbated by extended periods of poor oral hygiene.

Hygiene

Serious health and appearance problems can be caused by unsterilized needles, lack or ignoring of hygiene needs, more typically with chronic use, and obsessive skin-picking, which may lead to abscesses.

Increased risk of sexually transmitted disease

See also: Sex and drugs and Party and play

Men who use methamphetamine, cocaine, MDMA, and ketamine are twice as likely to have unprotected sex, according to British research. American psychologist Perry N. Halkitis performed an analysis using data collected from community-based participants among gay and bisexual men to examine the associations between methamphetamine use and sexual risk taking behaviors. Methamphetamine use was found to be related to higher frequencies of unprotected sexual intercourse in both HIV-positive and unknown casual partners. The association between methamphetamine use and unprotected acts were also more pronounced in HIV-positive participants. These findings suggested that methamphetamine use and engagement in unprotected anal intercourse are co-occurring risk behaviors that potentially heighten the risk of HIV transmission among gay and bisexual men. Methamphetamine allows users to engage in prolonged sexual activity, which may cause genital sores and abrasions. Methamphetamine can also cause sores and abrasions in the mouth via bruxism (teeth clenching and grinding), which can turn typically low-risk sex acts, such as oral sex, into high-risk sexual activity. As with the injection of any drug, if a group of users share a common needle without sterilization procedures, blood-borne diseases, such as HIV or hepatitis, can be transmitted. The level of needle sharing among methamphetamine users is similar to that among other drug injection users.

Use in pregnancy and breastfeeding

Methamphetamine passes through the placenta and is secreted into breast milk. Infants born to methamphetamine-abusing mothers were found to have a significantly smaller gestational age-adjusted head circumference and birth weight measurements. Methamphetamine exposure was also associated with neonatal withdrawal symptoms of agitation, vomiting and tachypnea. This withdrawal syndrome is relatively mild and only requires medical intervention in approximately 4% of cases.

Public health issues

Short-term exposure to high concentrations of chemical vapors that may exist in methamphetamine laboratories can cause severe health problems or even result in death. Exposure to these substances can occur from volatile air emissions, spills, fires, and explosions. Methamphetamine labs are often discovered when fire fighters respond to a blaze. Methamphetamine cooks, their families, and first responders are at highest risk of acute health effects from chemical exposure, including lung damage and chemical burns to the body. Following a seizure of a methamphetamine lab, there is often a low exposure risk to chemical residues, however this contamination should be sanitized. Chemical residues and lab wastes that are left behind at a former methamphetamine lab can result in health problems for people who use the property, therefore local health departments should thoroughly assess the property for hazards prior to allowing it to be reinhabited, especially by children.

Routes of administration

Studies have shown that the subjective pleasure of drug use (the reinforcing component of addiction) is proportional to the rate at which the blood level of the drug increases. These findings suggest the route of administration determines the potential risk for psychological addiction independently of other risk factors, such as dosage and frequency of use. Intravenous injection is the fastest route of drug administration, causing blood concentrations to rise the most quickly, followed by smoking, suppository (anal or vaginal insertion), insufflation (snorting), and ingestion (swallowing). Ingestion does not produce a rush, an acute transcendent state of euphoria, as forerunner to the high experienced with the use of methamphetamine, which is most pronounced with intravenous use. While the onset of the rush induced by injection can occur in as little as a few seconds, the oral route of administration requires approximately half an hour before the high sets in.

Injection

Injection, also known as "slamming", "banging", "shooting up" or "mainlining", is a popular method used by addicts which carries relatively greater risks than other methods of administration. The hydrochloride salt of methamphetamine is soluble in water. Intravenous users may use any dose range, from less than 100 milligrams to over one gram, using a hypodermic needle, although it should be noted that typically street methamphetamine is "cut" with a water-soluble cutting material, which constitutes a significant portion of a given street methamphetamine dose. Intravenous users risk developing pulmonary embolism (PE), a blockage of the main artery of the lung or one of its branches, and commonly develop skin rashes (also known as "speed bumps") or infections at the site of injection. As with the injection of any drug, if a group of users share a common needle without sterilization procedures, blood-borne diseases, such as HIV or hepatitis, can be transmitted.

Smoking

Smoking amphetamines refers to vaporizing it to inhale the resulting fumes, not burning it to inhale the resulting smoke. It is commonly smoked in glass pipes made from glassblown Pyrex tubes and light bulbs. It can also be smoked off aluminium foil, which is heated underneath by a flame. This method is also known as "chasing the white dragon" (whereas smoking heroin is known as "chasing the dragon"). There is little evidence that methamphetamine inhalation results in greater toxicity than any other route of administration. Lung damage has been reported with long-term use, but manifests in forms independent of route (pulmonary hypertension (PH)), or limited to injection users (pulmonary embolism (PE)).

Insufflation

Another popular route to intake methamphetamine is insufflation (snorting), where a user crushes the methamphetamine into a fine powder and then sharply inhales it (sometimes with a straw or a rolled up banknote, as with cocaine) into the nose where methamphetamine is absorbed through the soft tissue in the mucous membrane of the sinus cavity and straight into the bloodstream. Insufflation of methamphetamine can cause chemical damage to teeth, as it draws methamphatamine down the nasal passage, draining in the back of the throat and saturating the teeth with the caustic substances used in its illicit production.

Suppository

Suppository (anal or vaginal insertion) is a less popular method of administration used in the community with comparatively little research into its effects. Information on its use is largely anecdotal with reports of increased sexual pleasure and the effects of the drug lasting longer. As methamphetamine is centrally active in the brain, these effects are likely experienced through the higher bioavailability of the drug in the bloodstream (second to injection) and the faster onset of action (than insufflation). Nicknames for this method of use within methamphetamine communities include a "butt rocket", a "booty bump", "potato thumping", "turkey basting", "plugging", "boofing", "suitcasing", "keistering", "shafting", "bumming", and "shelving" (vaginal).

Illicit production

Synthesis

Crystal methamphetamine

Synthesis is relatively simple, but entails risk with flammable and corrosive chemicals, particularly the solvents used in extraction and purification; therefore, illicit production is often discovered by fires and explosions caused by the improper handling of volatile or flammable solvents. Most of the necessary chemicals are readily available in household products or over-the-counter cold or allergy medicines. When illicitly produced, methamphetamine is commonly made by the reduction of ephedrine or pseudoephedrine. The maximum conversion rate for ephedrine and pseudoephedrine is 92%, although typically, illicit methamphetamine laboratories convert at a rate of 50% to 75%.

Most methods of illicit production involve protonation of the hydroxyl group on the ephedrine or pseudoephedrine molecule. Methamphetamine is most structurally similar to methcathinone and amphetamine. The most common method for small-scale methamphetamine labs in the United States is primarily called the "Red, White, and Blue Process", which involves red phosphorus, pseudoephedrine or ephedrine (white), and iodine (which is technically a purple color in elemental form), from which hydroiodic acid is formed. In Australia, criminal groups have been known to substitute "red" phosphorus with either hypophosphorous acid or phosphorous acid. This is a hazardous process for amateur chemists, because phosphine gas, a side-product from in situ hydroiodic acid production, is extremely toxic to inhale.

Another common method uses the Birch reduction (also called the "Nagai method"), in which metallic lithium, commonly extracted from non-rechargeable lithium batteries, is substituted for difficult-to-find metallic sodium. However, the Birch reduction is dangerous because the alkali metal and liquid anhydrous ammonia are both extremely reactive, and the temperature of liquid ammonia makes it susceptible to explosive boiling when reactants are added.

Anti-meth sign on tank of anhydrous ammonia, Otley, Iowa. Anhydrous ammonia is a common farm fertilizer which is also a critical ingredient in making methamphetamine. In 2005, the state of Iowa gave out thousands of locks in order to prevent criminals from accessing the tanks.

A completely different procedure of synthesis uses the reductive amination of phenylacetone with methylamine, both of which are currently DEA list I chemicals (as are pseudoephedrine and ephedrine). The reaction requires a catalyst that acts as a reducing agent, such as mercury-aluminum amalgam or platinum dioxide, also known as Adams' catalyst. This was once the preferred method of production by motorcycle gangs in California, until DEA restrictions on the chemicals made the process difficult. Other less common methods use other means of hydrogenation, such as hydrogen gas in the presence of a catalyst.

Methamphetamine labs can give off noxious fumes, such as phosphine gas, methylamine gas, solvent vapors, acetone or chloroform, iodine vapors, white phosphorus, anhydrous ammonia, hydrogen chloride/muriatic acid, hydrogen iodide, lithium/sodium metal, ether, or methamphetamine vapors. If performed by amateurs, manufacturing methamphetamine can be extremely dangerous. If the red phosphorus overheats, because of a lack of ventilation, phosphine gas can be produced. This gas is highly toxic and, if present in large quantities, is likely to explode upon autoignition from diphosphine, which is formed by overheating phosphorus.

In recent years, reports of a simplified "Shake 'n Bake" synthesis have surfaced. The method is suitable for such small batches that pseudoephedrine restrictions are less effective, it uses chemicals that are easier to obtain (though no less dangerous than traditional methods), and it is so easy to carry out that some addicts have made the drug while driving. Producing methamphetamine in this fashion can be extremely dangerous and has been linked to several fatalities.

Production and distribution

Industrial-scale methamphetamine and MDMA chemical factory in Cikande, Indonesia.

Until the early 1990s, methamphetamine for the U.S. market was made mostly in labs run by drug traffickers in Mexico and California. Indiana state police found 1,260 labs in 2003, compared to just 6 in 1995, although this may be partly a result of increased police activity. As of 2007, drug and lab seizure data suggests that approximately 80 percent of the methamphetamine used in the United States originates from larger laboratories operated by Mexican-based syndicates on both sides of the border and that approximately 20 percent comes from small toxic labs (STLs) in the United States.

Mobile and motel-based methamphetamine labs have caught the attention of both the U.S. news media and the police. Such labs can cause explosions and fires and expose the public to hazardous chemicals. Those who manufacture methamphetamine are often harmed by toxic gases. Many police departments have specialized task forces with training to respond to cases of methamphetamine production. The National Drug Threat Assessment 2006, produced by the Department of Justice, found "decreased domestic methamphetamine production in both small and large-scale laboratories", but also that "decreases in domestic methamphetamine production have been offset by increased production in Mexico." They concluded that "methamphetamine availability is not likely to decline in the near term."

In July 2007, Mexican officials at the port of Lázaro Cárdenas seized a ship carrying 19 tons of pseudoephedrine, a raw material needed for methamphetamine. The shipment originated in Hong Kong and passed through the United States at the port of Long Beach prior to its arrival in Mexico.

In the United States, illicit methamphetamine comes in a variety of forms with prices varying widely over time. Most commonly, it is found as a colorless crystalline solid. Impurities may result in a brownish or tan color. Colorful flavored pills containing methamphetamine and caffeine are known as yaa baa (Thai for "crazy medicine").

An impure form of methamphetamine is sold as a crumbly brown or off-white rock, commonly referred to as "peanut butter crank". Methamphetamine found on the street is rarely pure, but adulterated with chemicals that were used to synthesize it. It may be diluted or cut with non-psychoactive substances like inositol, isopropylbenzylamine or dimethylsulfone. Another popular method is to combine methamphetamine with other stimulant substances, such as caffeine or cathine, into a pill known as a "Kamikaze", which can be particularly dangerous due to the synergistic effects of multiple stimulants. It may also be flavored with high-sugar candies, drinks, or drink mixes to mask the bitter taste of the drug. Coloring may be added to the meth, as is the case with "Strawberry Quick".

Natural occurrence

Methamphetamine has been reported to occur naturally in Acacia berlandieri, and possibly Acacia rigidula, trees that grow in West Texas. Methamphetamine and regular amphetamine were long thought to be strictly human-synthesized, but Acacia trees contain these and numerous other psychoactive compounds (e.g., mescaline, nicotine, dimethyltryptamine), and the related compound β-phenethylamine is known to occur from numerous Acacia species.

Terminology

Nicknames for methamphetamine are numerous and vary from region to region.

USA nicknames

Some common nicknames in the USA include "meth", "ice", "crystal", "crystal meth","alaskan fire dragon","chinese water dragon", and "tweak". Other referenced nicknames in the U.S. are "poor man's cocaine" and "Tina".

Methamphetamine may also be referred to as "speed", a nickname that is commonly used for amphetamine (in racemic or dextrorotary form), which differs from methamphetamine by the absence of a methyl group in its chemical formula.

International nicknames

Legality

Main article: Legal status of methamphetamine

The production, distribution, sale, and possession of methamphetamine is restricted or illegal in many jurisdictions.

Methamphetamine has been placed in Schedule II of the United Nations Convention on Psychotropic Substances treaty.

See also

Further reading

References

  1. ^ Schep LJ, Slaughter RJ, Beasley DM (2010). "The clinical toxicology of metamfetamine". Clinical Toxicology (Philadelphia, Pa.). 48 (7): 675–94. doi:10.3109/15563650.2010.516752. ISSN 1556-3650. PMID 20849327. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  2. Mack, Avram H.; Frances, Richard J.; Miller, Sheldon I. (2005). Clinical Textbook of Addictive Disorders, Third Edition. New York: The Guilford Press. p. 207. ISBN 1-59385-174-X.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. B.K. Logan. Methamphetamine - Effects on Human Performance and Behavior. Forensic Science Review, Vol. 14, no. 1/2 (2002), p. 142 Full PDF
  4. "Desoxyn (Methamphetamine Hydrochloride) Drug Information: User Reviews, Side Effects, Drug Interactions and Dosage at". Rxlist.com. Retrieved 2011-01-09.
  5. ^ Cruickshank, CC.; Dyer, KR. (2009). "A review of the clinical pharmacology of methamphetamine". Addiction. 104 (7): 1085–99. doi:10.1111/j.1360-0443.2009.02564.x. PMID 19426289. {{cite journal}}: Unknown parameter |month= ignored (help)
  6. ^ Barr, AM.; Panenka, WJ.; MacEwan, GW.; Thornton, AE.; Lang, DJ.; Honer, WG.; Lecomte, T. (2006). "The need for speed: an update on methamphetamine addiction". J Psychiatry Neurosci. 31 (5): 301–13. PMC 1557685. PMID 16951733. {{cite journal}}: Unknown parameter |month= ignored (help)
  7. ^ Darke, S.; Kaye, S.; McKetin, R.; Duflou, J. (2008). "Major physical and psychological harms of methamphetamine use". Drug Alcohol Rev. 27 (3): 253–62. doi:10.1080/09595230801923702. PMID 18368606. {{cite journal}}: Unknown parameter |month= ignored (help)
  8. Nagai N. (1893). "Kanyaku maou seibun kenkyuu seiseki (zoku)". Yakugaku Zasshi. 127 (127): 832–860.
  9. ^ Mitler MM, Hajdukovic R, Erman MK (1993). "Treatment of narcolepsy with methamphetamine". Sleep. 16 (4): 306–17. PMC 2267865. PMID 8341891. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  10. Grinspoon (1975-01-01). Speed Culture: Amphetamine Use and Abuse in America. Harvard University Press. p. 18. ISBN 978-0674831926. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  11. Andreas Ulrich, Andreas. "The Nazi Death Machine: Hitler's Drugged Soldiers - SPIEGEL ONLINE - News - International". Spiegel Online. Retrieved 2009-11-17.
  12. Doyle, D (2005). "Hitler's Medical Care" (PDF). Journal of the Royal College of Physicians of Edinburgh. 35 (1): 75–82. PMID 15825245. Retrieved 2006-12-28.
  13. Digital Creators Studio Yama-Arashi (2006-04-16). "抗うつ薬いろいろ (Various Antidepressants)". 医療情報提供サービス (in Japanese). Archived from the original on 2007-12-21. Retrieved 2006-07-14.
  14. M. Tamura (1989-01-01). "Japan: stimulant epidemics past and present". Bulletin on Narcotics. United Nations Office on Drugs and Crime. pp. 83–93. Retrieved 14 July 2006.
  15. Grollman, Arthur (1954). Pharmacology and Therapeutics: a Textbook for Students and Practitioners of Medicine. Lea & Febiger. p. 209. ISBN 0812101057. {{cite book}}: Cite has empty unknown parameter: |coauthors= (help)
  16. Methamphetamine Laboratory Identification and Hazards, U.S. Department of Justice, http://www.justice.gov/ndic/pubs7/7341/7341p.pdf
  17. "Methamphetamine Use: Lessons Learned" (PDF). National Criminal Justice Reference Service (NCJRS). Retrieved 2011-01-09.
  18. ^ Cunningham JK, Liu LM. (2003) Impacts of Federal ephedrine and pseudoephedrine regulations on methamphetamine-related hospital admissions. Addiction, 98, 1229–1237.
  19. Rothman, et al. "Amphetamine-Type Central Nervous System Potently than they Release Dopamine and Serotonin." (2001): Synapse 39, 32-41 (Table V. on page 37)
  20. Itzhak Y, Martin JL, Ali SF (2002). "Methamphetamine-induced dopaminergic neurotoxicity in mice: long-lasting sensitization to the locomotor stimulation and desensitization to the rewarding effects of methamphetamine". Progress in Neuro-psychopharmacology & Biological Psychiatry. 26 (6): 1177–83. doi:10.1016/S0278-5846(02)00257-9. PMID 12452543. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  21. Davidson C, Gow AJ, Lee TH, Ellinwood EH (2001). "Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment". Brain Research. Brain Research Reviews. 36 (1): 1–22. doi:10.1016/S0165-0173(01)00054-6. PMID 11516769. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  22. Yamamoto BK, Zhu W (1998). "The effects of methamphetamine on the production of free radicals and oxidative stress". The Journal of Pharmacology and Experimental Therapeutics. 287 (1): 107–14. PMID 9765328. {{cite journal}}: Unknown parameter |month= ignored (help)
  23. Reese EA, Bunzow JR, Arttamangkul S, Sonders MS, Grandy DK (2007). "Trace amine-associated receptor 1 displays species-dependent stereoselectivity for isomers of methamphetamine, amphetamine, and para-hydroxyamphetamine". The Journal of Pharmacology and Experimental Therapeutics. 321 (1): 178–86. doi:10.1124/jpet.106.115402. PMID 17218486. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  24. Grandy DK (2007). "Trace amine-associated receptor 1-Family archetype or iconoclast?". Pharmacology & Therapeutics. 116 (3): 355–90. doi:10.1016/j.pharmthera.2007.06.007. PMC 2767338. PMID 17888514. {{cite journal}}: Unknown parameter |month= ignored (help)
  25. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001). "Trace amines: identification of a family of mammalian G protein-coupled receptors". Proc. Natl. Acad. Sci. U.S.A. 98 (16): 8966–71. doi:10.1073/pnas.151105198. PMC 55357. PMID 11459929.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. ^ Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL, Olson SB, Magenis RE, Amara SG, Grandy DK (2001). "Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor". Mol. Pharmacol. 60 (6): 1181–8. PMID 11723224. {{cite journal}}: Unknown parameter |unused_data= ignored (help)CS1 maint: multiple names: authors list (link)
  27. Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, Frascarelli S, Crossley DA, Bunzow JR, Ronca-Testoni S, Lin ET, Hatton D, Zucchi R, Grandy DK (2004). "3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone". Nat. Med. 10 (6): 638–42. doi:10.1038/nm1051. PMID 15146179.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. Liberles SD, Buck LB (2006). "A second class of chemosensory receptors in the olfactory epithelium". Nature. 442 (7103): 645–50. doi:10.1038/nature05066. PMID 16878137.
  29. Yuan J, Hatzidimitriou G, Suthar P, Mueller M, McCann U, Ricaurte G (2006). "Relationship between temperature, dopaminergic neurotoxicity, and plasma drug concentrations in methamphetamine-treated squirrel monkeys". The Journal of Pharmacology and Experimental Therapeutics. 316 (3): 1210–8. doi:10.1124/jpet.105.096503. PMID 16293712. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  30. Mohler (2006-04-01). Advanced Therapy In Hypertension And Vascular Disease. PMPH-USA. p. 469. ISBN 978-1550093186. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  31. "Are there any effective treatments for methamphetamine abusers?". The Methamphetamine Problem: Question-and-Answer Guide. Tallahassee: Institute for Intergovernmental Research. 2009. Retrieved 2009-08-13.
  32. "Physiological Effects of a Methamphetamine Overdose | Montana State University". Montana.edu. Retrieved 2011-01-09.
  33. ^ "Erowid Methamphetamines Vault: Effects". Erowid.org. Retrieved 2011-01-09.
  34. Dart, Richard (2004). Medical Toxicology. Lippincott Williams & Wilkins. p. 1074. ISBN 978-0781728454.
  35. "What are the signs that a person may be using methamphetamine?". The Methamphetamine Problem: Question-and-Answer Guide. Tallahassee: Institute for Intergovernmental Research. 2009. Retrieved 2009-08-13.
  36. "Methamphetamine Effects: Including Long Term". KCI - The Anti-Meth Site. Retrieved 2011-01-09.
  37. "Methamphetamine medical facts from". Drugs.com. Retrieved 2011-01-09.
  38. "Methamphetamine | Center for Substance Abuse Research (CESAR)". Cesar.umd.edu. Retrieved 2011-01-09.
  39. "Amphetamines: Drug Use and Dependence | Merck Manual Professional". Merck.com. Retrieved 2011-01-09.
  40. McGregor C, Srisurapanont M, Jittiwutikarn J, Laobhripatr S, Wongtan T, White JM (2005). "The nature, time course and severity of methamphetamine withdrawal". Addiction. 100 (9): 1320–9. doi:10.1111/j.1360-0443.2005.01160.x. PMID 16128721. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  41. Thrash, B.; Thiruchelvan, K.; Ahuja, M.; Suppiramaniam, V.; Dhanasekaran, M. (2009). "Methamphetamine-induced neurotoxicity: the road to Parkinson's disease" (PDF). Pharmacol Rep. 61 (6): 966–77. PMID 20081231. {{cite journal}}: Cite has empty unknown parameter: |month= (help)
  42. Schepers RJ, Oyler JM, Joseph RE, Cone EJ, Moolchan ET, Huestis MA (2003). "Methamphetamine and amphetamine pharmacokinetics in oral fluid and plasma after controlled oral methamphetamine administration to human volunteers". Clinical Chemistry. 49 (1): 121–32. doi:10.1373/49.1.121. PMID 12507968. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  43. Hendrickson H, Laurenzana E, Owens SM (2006). "Quantitative determination of total methamphetamine and active metabolites in rat tissue by liquid chromatography with tandem mass spectrometric detection". The AAPS Journal. 8 (4): E709–17. doi:10.1208/aapsj080480. PMC 2751367. PMID 17233534.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  44. Marsel J, Döring G, Remberg G, Spiteller G (1972). "Methamphetamine--a metabolite of the anorectics Benzphetamine and Furfenorex". Zeitschrift für Rechtsmedizin. Journal of legal medicine. 70 (4): 245–50. PMID 5084766. {{cite journal}}: Cite has empty unknown parameter: |month= (help)CS1 maint: multiple names: authors list (link)
  45. Greenhill B, Valtier S, Cody JT (2003). "Metabolic profile of amphetamine and methamphetamine following administration of the drug famprofazone". Journal of analytical toxicology. 27 (7): 479–84. PMID 14607003. {{cite journal}}: Cite has empty unknown parameter: |month= (help)CS1 maint: multiple names: authors list (link)
  46. "Drugs and Human Performance FACT SHEETS - Methamphetamine (and amphetamine) | National Highway Traffic Safety Administration (NHTSA)". Nhtsa.gov. Retrieved 2011-01-09.
  47. National Highway Traffic Safety Administration (NHTSA) - Methamphetamine (And Amphetamine)
  48. de la Torre R, Farré M, Navarro M, Pacifici R, Zuccaro P, Pichini S. Clinical pharmacokinetics of amfetamine and related substances: monitoring in conventional and non-conventional matrices. Clin. Pharmacokinet. 43: 157-185, 2004.
  49. Paul BD, Jemionek J, Lesser D, Jacobs A, Searles DA. Enantiomeric separation and quantitation of (+/-)-amphetamine, (+/-)-methamphetamine, (+/-)-MDA, (+/-)-MDMA, and (+/-)-MDEA in urine specimens by GC-EI-MS after derivatization with (R)-(-)- or (S)-(+)-alpha-methoxy-alpha-(trifluoromethy)phenylacetyl chloride (MTPA). J. Anal. Toxicol. 28: 449-455, 2004.
  50. R. Baselt, Disposition of Toxic Drugs and Chemicals in Man, 8th edition, Biomedical Publications, Foster City, CA, 2008, pp. 947-952.
  51. ^ Ghodse, Hamid (2002-08-15). Drugs and Addictive Behaviour: A Guide to Treatment. Cambridge University Press. p. 114. ISBN 978-0521000017.
  52. Bennett BA, Hollingsworth CK, Martin RS, Harp JJ (1998). "Methamphetamine-induced alterations in dopamine transporter function". Brain Research. 782 (1–2): 219–27. doi:10.1016/S0006-8993(97)01281-X. PMID 9519266. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  53. Do You Know... Methamphetamine. Centre for Addiction and Mental Health.
  54. Wagner GC, Carelli RM, Jarvis MF (1985). "Pretreatment with ascorbic acid attenuates the neurotoxic effects of methamphetamine in rats". Research Communications in Chemical Pathology and Pharmacology. 47 (2): 221–8. PMID 3992009. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  55. Wagner GC, Carelli RM, Jarvis MF (1986). "Ascorbic acid reduces the dopamine depletion induced by methamphetamine and the 1-methyl-4-phenyl pyridinium ion". Neuropharmacology. 25 (5): 559–61. doi:10.1016/0028-3908(86)90184-X. PMID 3488515. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  56. Oyler JM, Cone EJ, Joseph RE, Moolchan ET, Huestis MA (2002). "Duration of detectable methamphetamine and amphetamine excretion in urine after controlled oral administration of methamphetamine to humans". Clinical Chemistry. 48 (10): 1703–14. PMID 12324487. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  57. The Ice Age (See Below)
  58. Rothman RB, Partilla JS, Baumann MH, Dersch CM, Carroll FI, Rice KC (2000). "Neurochemical neutralization of methamphetamine with high-affinity nonselective inhibitors of biogenic amine transporters: a pharmacological strategy for treating stimulant abuse". Synapse. 35 (3): 222–7. doi:10.1002/(SICI)1098-2396(20000301)35:3<222::AID-SYN7>3.0.CO;2-K. PMID 10657029. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  59. ^ Winslow BT, Voorhees KI, Pehl KA (2007). "Methamphetamine abuse". American Family Physician. 76 (8): 1169–74. PMID 17990840.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  60. Grabowski J, Shearer J, Merrill J, Negus SS (2004). "Agonist-like, replacement pharmacotherapy for stimulant abuse and dependence". Addictive Behaviors. 29 (7): 1439–64. doi:10.1016/j.addbeh.2004.06.018. PMID 15345275. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  61. "Sleep medicine 'can help ice addicts quit'". Retrieved 2007-12-02.
  62. AJ Giannini. Drugs of Abuse—Second Edition. Los Angeles, Practice Management Information Company, 1997.
  63. "Noradrenergic and dopaminergic effects of (+)-amphetamine-like stimulants in the baboon Papio anubis". Amphetamines.com. Retrieved 2011-01-09.
  64. "Properties and effects of methamphetamine | Turning Point Alcohol and Drug Centre" (PDF). Retrieved 2011-01-09.
  65. "UM study: Meth may lessen stroke damage". Associated Press. 2006-10-12. Archived from the original on 2009-01-15. Retrieved 2008-06-29.
  66. "Methamphetamine Use (Meth Mouth)". American Dental Association. Archived from the original on 2008-06-01. Retrieved 2006-12-16.
  67. ^ Meth Mouth | Meth awareness and prevention project of South Dakota
  68. Hasan AA, Ciancio S (2004). "Relationship between amphetamine ingestion and gingival enlargement". Pediatric Dentistry. 26 (5): 396–400. PMID 15460293.
  69. Shaner JW (2002). "Caries associated with methamphetamine abuse". The Journal of the Michigan Dental Association. 84 (9): 42–7. PMID 12271905. {{cite journal}}: Unknown parameter |month= ignored (help)
  70. "Up to 20 per cent of gay men have tried crystal meth". PinkNews. 2006-07-14. Retrieved 2011-01-09.
  71. Halkitis PN, Pandey Mukherjee P, Palamar JJ (2008). "Longitudinal Modeling of Methamphetamine Use and Sexual Risk Behaviors in Gay and Bisexual Men". AIDS and Behavior. 13 (4): 783–791. doi:10.1007/s10461-008-9432-y. PMID 15590381.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  72. Patrick Moore (2005-06-14). "We Are Not OK". VillageVoice. Retrieved 2011-01-09.
  73. "Methamphetamine Use and Health | UNSW: The University of New South Wales - Faculty of Medicine" (PDF). Retrieved 2011-01-09.
  74. "Methamphetamine abuse during pregnancy and its health impact on neonates born at Siriraj Hospital, Bangkok, Thailand. | PubMed". Ncbi.nlm.nih.gov. 2010-12-08. Retrieved 2011-01-09.
  75. "Acute Public Health Consequences of Methamphetamine Laboratories | Centers for Disease Control & Prevention (CDC)". Cdc.gov. Retrieved 2011-01-09.
  76. "Health Consultation - CLANDESTINE DRUG LAB IN MENOMONEE FALLS APARTMENT" (PDF). Agency for Toxic Substances & Disease Registry (ATSDR). Retrieved 2011-01-09.
  77. "Journal of Pharmacology and Experimental Therapeutics (JPET) | Onset of Action and Drug Reinforcement" (PDF). Retrieved 2011-01-09.
  78. Methamphetamine | Abstemious Outpatient Clinic, Inc.
  79. Methamphetamine: One of America's Greatest Challenges Part I | University of Nebraska-Lincoln
  80. Smoking Meth, the beginner and expert guide to chase the white dragon | Smokingmeth.Net
  81. Heroin smoking by 'chasing the dragon': origins and history | BLTC RESEARCH
  82. Methamphetamine Toxicity Secondary to Intravaginal Body Stuffing | University of Hawaii System
  83. "Short Term Effects of Smoking Crystal Meth | LoveToKnow Recovery". Addiction.lovetoknow.com. Retrieved 2011-01-09.
  84. ^ National Drug Strategy - 1.9 Routes of administration | Department of Health and Ageing
  85. Meth Facts | All Treatment
  86. Ascorbic acid-deficient condition alters central effects of methamphetamine | ScienceDirect
  87. Urban Dictionary
  88. "The War on Drugs: Methamphetamine, Public Health, and Crime | University of California, Santa Cruz (UCSC)" (PDF). Retrieved 2011-01-09.
  89. PACIA.org.au
  90. "Illinois Attorney General | Basic Understanding Of Meth". Illinoisattorneygeneral.gov. Retrieved 2011-01-09.
  91. The Gazette Staff (6 Oct 2009). "Anhydrous ammonia tank locks have flaws". Cedar Rapids Gazette.
  92. "A Synthesis of Amphetamine. J. Chem. Educ. 51, 671 (1974)". Erowid.org. Retrieved 2011-01-09.
  93. Owen, Frank (2007). "Chapter 1: The Rise of Nazi Dope". No Speed Limit: The Highs and Lows of Meth. Macmillan. pp. 17–18. ISBN 9780312356163.
  94. "New 'shake-and-bake' method for making crystal meth gets around drug laws but is no less dangerous". New York Daily News. Associated Press. August 25, 2009.
  95. "Shake and Bake Meth". Retrieved 2009-12-01. {{cite web}}: Text "New 'Shake and Bake' Meth Method Explodes" ignored (help)
  96. "Law Enforcement Facts". U.S.: Indiana State Government. 2007. Archived from the original on 2007-09-22. {{cite web}}: |archive-date= / |archive-url= timestamp mismatch; 2007-09-26 suggested (help)
  97. DEA Congressional Testimony, "Drug Threats And Enforcement Challenges". U.S. Drug Enforcement Administration. March 22, 2007. Retrieved 2008-05-03.
  98. "Methamphetamine". National Drug Intelligence Center. January 2006. Retrieved 2009-08-25. {{cite web}}: Text "National Drug Threat Assessment 2006" ignored (help)
  99. Mexico says pseudoephedrine case signals breakdown in port security in U.S., China AP, The Telegram (The Canadian Press), July 26, 2007. Olga R. Rodriguez
  100. "The Price and Purity of Illicit Drugs: 1981 Through the Second Quarter of 2003". WhiteHouseDrugPolicy.gov. 2004. Archived from the original on 2005-10-27. {{cite web}}: Unknown parameter |month= ignored (help)
  101. Amos, Glenda (September 2007). "The Ice Epidemic" (PDF). WCTU.com.au. Australia: Woman's Christian Temperance Union. Archived from the original (PDF) on 2008-07-19. Retrieved 2010-11-17.
  102. Candy Flavored Meth Targets New Users CBS News, May 2, 2007. Lloyd De Vries. Retrieved 2009-12-29.
  103. Mikkelson, Barbara. "Strawberry Meth". Snopes.com. Retrieved 2009-08-25.
  104. BA Clement, CM Goff, TDA Forbes, Phytochemistry Vol.49, No 5, pp 1377–1380 (1998) "Toxic amines and alkaloids from Acacia rigidula"
  105. "Ask Dr. Shulgin Online: Acacias and Natural Amphetamine". Cognitiveliberty.org. 2001-09-26. Retrieved 2011-01-09.
  106. Siegler, D.S. (2003). "Phytochemistry of Acacia—sensu lato". Biochemical Systematics and Ecology. 31 (8): 845–873. doi:10.1016/S0305-1978(03)00082-6. {{cite journal}}: Unknown parameter |month= ignored (help)
  107. "Poor Man's Cocaine | Blogcritics Politics". Blogcritics.org. Retrieved 2011-01-09.
  108. "Crystal Methamphetamine | About.com: Gay Life". Gaylife.about.com. 2010-06-14. Retrieved 2011-01-09.
  109. "Methamphetamine | Metropolitan Drug Commission". Metrodrug.org. Retrieved 2011-01-09.
  110. "Ice". reachout.com. 2010-09-06. Retrieved 2011-01-26.
  111. Plüddemann, Andreas (2005-06). "Tik, memory loss and stroke". Science in Africa. South Africa: Science magazine for Africa CC. Retrieved 2009-08-13. {{cite news}}: Check date values in: |date= (help); More than one of |work= and |journal= specified (help)
  112. ^ "Meth Slang Names for Meth, Meth Jargon | Meth Addiction and Recovery". Methhelponline.com. 2007-02-09. Retrieved 2011-01-09.
  113. Drugs and HIV infection in the Russian Federation
  114. "What is methamphetamine? | New Zealand Police". Police.govt.nz. 2004-10-15. Retrieved 2011-01-09.
  115. "List of psychotropic substances under international control" (PDF). International Narcotics Control Board. Retrieved 2010-05-10.

External links

Documentaries

Academic Sources

Methamphetamine
Enantiomers
Neuropharmacology
Biomolecular targets
Inhibited transporters
Health
History and culture
Law
Ethnicity and nationality
Recreational drug use
Major recreational drugs
Depressants
Opioids
Stimulants
Entactogens
Hallucinogens
Psychedelics
Dissociatives
Deliriants
Cannabinoids
Oneirogens
Club drugs
Drug culture
Cannabis culture
Coffee culture
Drinking culture
Psychedelia
Smoking culture
Other
Legality of drug use
International
State level
Drug policy
by country
Drug legality
Other
Other
Drug
production
and trade
Drug
production
Drug trade
Issues with
drug use
Harm reduction
Countries by
drug use
Stimulants
Adamantanes
Adenosine antagonists
Alkylamines
Ampakines
Arylcyclohexylamines
Benzazepines
Cathinones
Cholinergics
Convulsants
Eugeroics
Oxazolines
Phenethylamines
Phenylmorpholines
Piperazines
Piperidines
Pyrrolidines
Racetams
Tropanes
Tryptamines
Others
ATC code: N06B
ADHD pharmacotherapies
CNSTooltip central nervous system stimulants
Non-classical
CNS stimulants
α2-adrenoceptor
agonists
Antidepressants
Miscellaneous/others
Related articles
Antiobesity agents/Anorectics (A08)
Stimulants
Amphetamines and
phenethylamines
Adrenergic agonists
Other
Cannabinoid
antagonists
GLP-1, GIP, and / or
glucagon agonists
DACRAs
5-HT2C
receptor agonists
Absorption inhibitors
Uncouplers
Others
Adrenergic receptor modulators
α1
Agonists
Antagonists
α2
Agonists
Antagonists
β
Agonists
Antagonists
Dopamine receptor modulators
D1-like
Agonists
PAMs
Antagonists
D2-like
Agonists
Antagonists
Phenethylamines
Phenethylamines
Amphetamines
Phentermines
Cathinones
Phenylisobutylamines
Phenylalkylpyrrolidines
Catecholamines
(and close relatives)
Miscellaneous
Categories:
Methamphetamine Add topic