Misplaced Pages

Sea anemone neurotoxin

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Arcadian (talk | contribs) at 18:44, 15 August 2011 (added Category:Neurotoxins using HotCat). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 18:44, 15 August 2011 by Arcadian (talk | contribs) (added Category:Neurotoxins using HotCat)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (February 2009)

Sea anemone neurotoxin is the name given to neurotoxins produced by sea anemones with related structure and function. A number of proteins belonging to this family, including calitoxin and anthopleurin. The neurotoxins bind specifically to the sodium channel, thereby delaying its inactivation during signal transduction, resulting in strong stimulation of mammalian cardiac muscle contraction. Calitoxin 1 has been found in neuromuscular preparations of crustaceans, where it increases transmitter release, causing firing of the axons. Three disulfide bonds are present in this protein.

This family also includes the antihypertensive and antiviral proteins BDS-I (P11494) and BDS-II (P59084) expressed by Anemonia sulcata. BDS-I is organised into a triple-stranded antiparallel beta-sheet, with an additional small antiparallel beta-sheet at the N-terminus. Both peptides are known to specifically block the Kv3.4 potassium channel, and thus bring about a decrease in blood pressure. Moreover, they inhibit the cytopathic effects of mouse hepatitis virus strain MHV-A59 on mouse liver cells, by an unknown mechanism.

Protein family
Anenome neurotoxin
Structure of the neurotoxin ATX Ia from Anemonia sulcata.
Identifiers
SymbolToxin_4
PfamPF00706
Pfam clanCL0075
InterProIPR000693
SCOP21atx / SCOPe / SUPFAM
OPM superfamily56
OPM protein1apf
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB1apf :3-47 1ahl :3-47 1atx :3-44 2sh1 :2-44 1shi :2-44 1sh1 :2-44
Protein family
Antihypertensive protein BDS-I/II
Structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata.
Identifiers
SymbolBDS_I_II
PfamPF07936
Pfam clanCL0075
InterProIPR012414
SCOP22bds / SCOPe / SUPFAM
OPM superfamily56
OPM protein1bds
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB2bds :1-43 1bds :1-43 1wqkA:1-41 1wxnA:1-41

See also

References

  1. Norton TR (1981). "Cardiotonic polypeptides from Anthopleura xanthogrammica (Brandt) and A. elegantissima (Brandt)". Fed. Proc. 40 (1): -. PMID 6108877.
  2. Yasunobu KT, Norton TR, Reimer NS, Yasunobu CL (1985). "Amino acid sequence of the Anthopleura xanthogrammica heart stimulant, anthopleurin-B". J. Biol. Chem. 260 (15): -. PMID 4019448.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Scanlon MJ, Pallaghy PK, Norton RS, Monks SA (1995). "Solution structure of the cardiostimulant polypeptide anthopleurin-B and comparison with anthopleurin-A". Structure. 3 (8): -. PMID 7582896.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Clore GM, Driscoll PC, Gronenborn AM, Beress L (1989). "Determination of the three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata: a study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing". Biochemistry. 28 (5): 2188–2198. doi:10.1021/bi00431a033. PMID 2566326.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. Lazdunski M, Schweitz H, Diochot S, Beress L (1998). "Sea anemone peptides with a specific blocking activity against the fast inactivating potassium channel Kv3.4". J. Biol. Chem. 273 (12): 6744–6749. doi:10.1074/jbc.273.12.6744. PMID 9506974.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  6. Widmer H, Billeter M, Wüthrich K (1989). "Three-dimensional structure of the neurotoxin ATX Ia from Anemonia sulcata in aqueous solution determined by nuclear magnetic resonance spectroscopy". Proteins. 6 (4): 357–71. doi:10.1002/prot.340060403. PMID 2576133.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Driscoll PC, Gronenborn AM, Beress L, Clore GM (1989). "Determination of the three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata: a study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing". Biochemistry. 28 (5): 2188–98. doi:10.1021/bi00431a033. PMID 2566326. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
This article incorporates text from the public domain Pfam and InterPro: IPR000693
Stub icon

This membrane protein–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: