Misplaced Pages

Copernican principle

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by 74.100.71.90 (talk) at 04:42, 10 April 2013 (I did not add Krauss' quote. It was there long before you came along. Add the rest if you want, but do not revert. The alignment with the ecliptic is anti-Copernican.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 04:42, 10 April 2013 by 74.100.71.90 (talk) (I did not add Krauss' quote. It was there long before you came along. Add the rest if you want, but do not revert. The alignment with the ecliptic is anti-Copernican.)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In physical cosmology, the Copernican principle, named after Nicolaus Copernicus, states that the Earth is not in a central, specially favored position. More recently, the principle has been generalized to the relativistic concept that humans are not privileged observers of the universe. In this sense, it is equivalent to the mediocrity principle, with important implications for the philosophy of science.

Since the 1990s the term has been used (interchangeably with "the Copernicus method") for J. Richard Gott's Bayesian-inference-based prediction of duration of ongoing events, a generalized version of the Doomsday argument.

Recent observations such as "the axis of evil", a signal embedded in the anisotropy of the CMB which is aligned to the ecliptic and the equinoxes, challenge the Copernican Principle.

Origin and implications

Michael Rowan-Robinson emphasizes the importance of the Copernican principle: "It is evident that in the post-Copernican era of human history, no well-informed and rational person can imagine that the Earth occupies a unique position in the universe."

Hermann Bondi named the principle after Copernicus in the mid-20th century, although the principle itself dates back to the 16th-17th century paradigm shift away from the Ptolemaic system, which placed Earth at the center of the Universe. Copernicus demonstrated the motion of the planets can be explained without the assumption that Earth is centrally located and stationary. He argued that the apparent retrograde motion of the planets is an illusion caused by Earth's movement around the Sun, which the Copernican model placed at the centre of the Universe. Copernicus himself was mainly motivated by technical dissatisfaction with the earlier system and not by support for any mediocrity principle. In fact, although the Copernican heliocentric model is often described as "demoting" Earth from its central role it had in the Ptolemaic geocentric model, neither Copernicus nor other 15th- and 16th-century scientists and philosophers viewed it as such.

In cosmology, if one assumes the Copernican principle and observes that the universe appears isotropic from our vantage-point on Earth, then one can infer that the Universe is generally homogeneous (at any given time) and is also isotropic about any given point. These two conditions comprise the cosmological principle.

In practice, astronomers observe that the Universe has heterogeneous structures up to the scale of galactic superclusters, filaments and great voids, but becomes more and more homogeneous and isotropic when observed on larger and larger scales, with little detectable structure on scales of more than about 200 million parsecs. However, on scales comparable to the radius of the observable universe, we see systematic changes with distance from the Earth. For instance, galaxies contain more young stars and are less clustered, and quasars appear more numerous. While this might suggest that the Earth is at the center of the Universe, the Copernican principle requires us to interpret it as evidence for the evolution of the Universe with time: this distant light has taken most of the age of the Universe to reach and shows us the Universe when it was young. The most distant light of all, cosmic microwave background radiation, is isotropic to at least one part in a thousand.

Modern mathematical cosmology is based on the assumption that the Cosmological principle is almost, but not exactly, true on the largest scales. The Copernican principle represents the irreducible philosophical assumption needed to justify this, when combined with the observations.

Bondi and Thomas Gold used the Copernican principle to argue for the perfect cosmological principle which maintains that the universe is also homogeneous in time, and is the basis for the steady-state cosmology. However, this strongly conflicts with the evidence for cosmological evolution mentioned earlier: the Universe has progressed from extremely different conditions at the Big Bang, and will continue to progress toward extremely different conditions, particularly under the rising influence of dark energy, apparently toward the Big Freeze or Big Rip.

Confirmation or Demise?

The Cosmic Microwave Background (CMB) radiation signature presents a direct large-scale view of universe that can be used to identify whether our position or movement has any particular significance. There has been much publicity about analysis of results from the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck mission that show both expected and unexpected anisotropies in the CMB.

In particular, some anomalies have been reported to be aligned with the ecliptic which would be a clear violation of the Copernican Principle, as would any preferred direction in space. The alignment with the ecliptic has been dubbed the Axis of Evil due to the dire implications for current models of the cosmos. Studies on WMAP and COBE data have claimed to have refuted the alignments as statistical anomalies or local phenomena, but the latest data from the 2013 Planck satellite strongly assert the preferred direction and related anisotropies are present at around a three sigma level, confirming WMAP and COBE findings. These alternate explanations have been discussed and shown not reasonable solutions by Copi, et. al., who looked to Planck to resolve whether the preferred direction and alignmments are spurious.As noted, Planck has confirmed the preferred direction and alignment.

Ecliptic alignment of cosmic microwave background anisotropy

Results from Wilkinson Microwave Anisotropy Probe (WMAP) appear to run counter to Copernican expectations. The motion of the solar system, and the orientation of the plane of the are aligned with features of the microwave sky, which on conventional thinking are caused by structure at the edge of the observable universe

Lawrence Krauss is quoted as follows in the referenced Edge.org article:

But when you look at map, you also see that the structure that is observed, is in fact, in a weird way, correlated with the plane of the earth around the sun. Is this Copernicus coming back to haunt us? That's crazy. We're looking out at the whole universe. There's no way there should be a correlation of structure with our motion of the earth around the sun — the plane of the earth around the sun — the ecliptic. That would say we are truly the center of the universe.

It would be somewhat surprising if the WMAP alignments were a complete coincidence, but the anti-Copernican implications suggested by Krauss are far more surprising, now that they are confirmed to be true by Planck . Other possibilities that were considered are (i) that residual instrumental errors in WMAP cause the effect (ii) that unexpected microwave emission from within the solar system is contaminating the maps. The Planck announcement of March 21st, 2013, dashed this last hope for the Copernican Principle, as it has confrmed the WMAP and COBE results.

Modern tests

From the PhysicsWorld.org news article "New tests of the Copernican Principle proposed,"

Robert Caldwell from Dartmouth College and Albert Stebbins from Fermi National Laboratory in the US explain how the Cosmic Microwave Background (CMB) radiation spectrum — an all pervasive sea of microwave radiation originating just 380 000 years after the Big Bang — could be used to test whether the Copernican Principle stands.

In a separate paper, Jean-Philippe Uzan from the Pierre and Marie Curie University in France along with Chris Clarkson and George Ellis from the University of Cape Town in South Africa suggest another way to test the Copernican Principle. Their scheme involves measuring the red-shift of galaxies — the shift in wavelength of light to longer wavelengths due to a speedup — very precisely over time to see if there are changes. The team argues that this red-shift data can be combined with measurements of the distance of the galaxies to infer if the universe is spatially homogeneous — which is a tenet of the Copernican Principle.

See also

References

  1. H. Bondi (1952). Cosmology. Cambridge University Press. p. 13.
  2. J. A. Peacock (1998). Cosmological Physics. Cambridge University Press. p. 66..
  3. Michael Rowan-Robinson. Cosmology (3rd ed.). Clarendon Press, Oxford. p. 62..
  4. Thomas Kuhn. The Copernican Revolution. Harvard University Press..
  5. George Musser (2001). "Copernican Counterrevolution". Scientific American. 284 (3): 24. doi:10.1038/scientificamerican0301-24a.
  6. Dennis Danielson (2009). "The Bones of Copernicus". American Scientist. 97 (1): 50–57. doi:10.1511/2009.76.50.
  7. Anthony Challinor (2012). "CMB anisotropy science: A review". arXiv:1210.6008 . {{cite arXiv}}: Unknown parameter |version= ignored (help)
  8. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1103/PhysRevD.87.043511, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1103/PhysRevD.87.043511 instead.
  9. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1103/PhysRevLett.95.071301, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1103/PhysRevLett.95.071301 instead.
  10. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1103/PhysRevD.87.023524, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1103/PhysRevD.87.023524 instead.
  11. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1103/PhysRevLett.107.041301, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1103/PhysRevLett.107.041301 instead.
  12. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1088/1475-7516/2012/10/059, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1088/1475-7516/2012/10/059 instead.
  13. Planck 2013 Results. Isotropy and Statistics of the CMB. planck.caltech.edu/pub/2013results/Planck_2013_results_23.pdf
  14. Large-angle anomalies in the CMB, http://arxiv.org/abs/1004.5602
  15. The Uncorrelated Universe: Statistical Anisotropy and the Vanishing Angular Correlation Function in WMAP Years 1-3 http://arxiv.org/abs/astro-ph/0605135
  16. CERN Courier "Does the motion of the solar system affect the microwave sky?"
  17. C. J. Copi, D. Huterer, D. J. Schwarz, G. D. Starkman (2006). "On the large-angle anomalies of the microwave sky". Monthly Notices of the Royal Astronomical Society. 367: 79–102. arXiv:astro-ph/0508047. Bibcode:2006MNRAS.367...79C. doi:10.1111/j.1365-2966.2005.09980.x.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  18. "The Energy of Space That Isn't Zero."
  19. http://www.esa.int/Our_Activities/Space_Science/Planck/Planck_reveals_an_almost_perfect_Universe
  20. Copi et al. op. cit.
  21. "New tests of the Copernican Principle proposed", PhysicsWorld.org
  22. Caldwell, R. R. and Stebbins, A. (2008). "A Test of the Copernican Principle". Physical Review Letters. 100 (19): 191302. arXiv:0711.3459. Bibcode:2008PhRvL.100s1302C. doi:10.1103/PhysRevLett.100.191302. PMID 18518434.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. Uzan, Jean-Philippe; Clarkson, Chris; and Ellis, George F. R. (2008). "Time Drift of Cosmological Redshifts as a Test of the Copernican Principle". Physical Review Letters. 100 (19): 191303. arXiv:0801.0068. Bibcode:2008PhRvL.100s1303U. doi:10.1103/PhysRevLett.100.191303. PMID 18518435.{{cite journal}}: CS1 maint: multiple names: authors list (link)

External links

Categories: