Misplaced Pages

:Requests for comment/Genetically modified organisms - Misplaced Pages

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
< Misplaced Pages:Requests for comment

This is an old revision of this page, as edited by Tryptofish (talk | contribs) at 17:53, 31 May 2016 (Purpose of this RfC: clearer). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 17:53, 31 May 2016 by Tryptofish (talk | contribs) (Purpose of this RfC: clearer)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

{{rfc}}

{{ARBGMO talk notice|style=long}}

{{Editnotice GMO 1RR}}

This is a Request for Comment, conducted under discretionary sanctions issued by the Arbitration Committee, concerning how to indicate the scientific views on the safety of genetically modified crops for human consumption.

Introduction

Jump to comments section.

Purpose of this RfC

The following pages are affected by this RfC:

List of pages

Each of these pages has language similar to: There is general scientific agreement that food on the market derived from GM crops poses no greater risk to human health than conventional food, but should be tested on a case-by-case basis. Editors are generally dissatisfied with this wording, but disagree about how to revise it. This RfC presents options for content to replace that wording, and is intended to determine community consensus about that.

Specifically, you are asked to address two questions:

1. Based upon the policies, guidelines, and concepts related to scientific consensus, listed below, do the preponderance of reliable sources indicate that there is a scientific consensus about the safety of genetically modified food with respect to human health?

2. Should the existing language be changed, and which content proposal(s), if any, best represent the answer to question 1 for inclusion in the articles listed above?

Rules

Under the authority granted to me as an uninvolved Administrator and by the terms of the Arbitration Committee GMO case, and Standard Discretionary Sanctions as authorized by that case, I hereby impose the following limits on debate:

  • All editors who participate in this RfC will receive a Discretionary Sanctions notice on their user talk page. This is purely procedural and not intended to indicate any wrongdoing; it is merely a notification that this topic area is subject to sanctions imposed by the Arbitration Committee.
  • All editors are required to maintain a proper level of decorum. Unnecessary rudeness, hostility, casting aspersions, and battleground mentality will not be tolerated here, in the interest of arriving at a clear, fair-minded consensus. Inappropriate conduct may be met with warnings, blocks, or bans from further participation in this RfC as the administrator deems necessary. To foster a collaborative atmosphere, editors are encouraged not to bring statements made here to Arbitration Enforcement, but rather to leave it to the patrolling admins.
  • The sole purpose of this RfC is to determine consensus about a specific question concerning article content. It is not a venue for personal opinions about GMOs in general, nor a place to relitigate past disputes.
  • If you came here because someone asked you to, or you read a message on another website, please note that this is not a majority vote, but instead a discussion among Misplaced Pages contributors. Misplaced Pages has policies and guidelines regarding the encyclopedia's content, and consensus (agreement) is gauged based on the merits of the arguments, not by counting votes.
  • If you believe that a user is violating policy or the rules set forth by Arbcom or by this page, and you cannot work it out between yourselves, please speak to an Enforcement admin. If you believe an admin is behaving inappropriately, their decisions may be appealed to WP:ANI, WP:AE or Arbcom directly.
  • Please do not make changes in proposals that have already been posted. Anyone is permitted to post additional proposals, below the existing proposals.
  • Threaded discussion is prohibited on the RfC page. To comment in the RfC, you must create your own section within the Comments section, placing your username in the section header. Within your own section, you may present your opinions on the proposals, and briefly pose questions to other editors or respond to questions from other editors. Do not make any edits in any other editor's section. A section may be edited only by the editor to whom it corresponds, and by enforcing administrators. Editors are encouraged to discuss and collaborate with one another on the RfC Talk page, where threaded discussion is permitted and there are no word limits.
  • In each comment section, each editor is strictly limited to 800 words, including replies to other editors. (Word Count Tool) There will be no exceptions. Excessively long statements will be hatted until shortened.
  • , , and , have agreed to serve as a panel of three experienced, uninvolved editors who will close the RfC after 30 days and determine the consensus (if any). Because this is such a contentious area, the RfC will run for the full 30 days, unless additional time is needed to judge consensus, and closing early as per WP:SNOW is unlikely.
  • The consensus reached (if any) will be imposed as a Discretionary Sanction on the topic area, broadly construed. It may be overturned only by another widely published full 30-day RfC, a consensus of administrators at WP:AE, or by decree of the Arbitration Committee.


The following will probably be worked into The Wordsmith's opening statement:
  • Nobody is required to participate in this RfC, and anybody may cease participation at any time for any reason. However, it is in everyone's best interest that we solicit a wide range of opinions so that we may achieve a strong consensus.
  • Finally, if you have issue with my own conduct or with these rules, I request that you please discuss with me on my own user talk page before escalating. I am always willing to listen to a reasonable argument.

--~~~~

Background

Policies, guidelines and essays to keep in mind

Proposals

Proposal 1

There is a scientific consensus that currently available food derived from GM crops poses no greater risk to human health than conventional food, but that each GM food needs to be tested on a case-by-case basis before introduction. Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe. The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.
Citations
  1. Nicolia, Alessandro; Manzo, Alberto; Veronesi, Fabio; Rosellini, Daniele (2013). "An overview of the last 10 years of genetically engineered crop safety research" (PDF). Critical Reviews in Biotechnology: 1–12. doi:10.3109/07388551.2013.823595. We have reviewed the scientific literature on GE crop safety for the last 10 years that catches the scientific consensus matured since GE plants became widely cultivated worldwide, and we can conclude that the scientific research conducted so far has not detected any significant hazard directly connected with the use of GM crops.

    The literature about Biodiversity and the GE food/feed consumption has sometimes resulted in animated debate regarding the suitability of the experimental designs, the choice of the statistical methods or the public accessibility of data. Such debate, even if positive and part of the natural process of review by the scientific community, has frequently been distorted by the media and often used politically and inappropriately in anti-GE crops campaigns.

  2. "State of Food and Agriculture 2003–2004. Agricultural Biotechnology: Meeting the Needs of the Poor. Health and environmental impacts of transgenic crops". Food and Agriculture Organization of the United Nations. Retrieved February 8, 2016. Currently available transgenic crops and foods derived from them have been judged safe to eat and the methods used to test their safety have been deemed appropriate. These conclusions represent the consensus of the scientific evidence surveyed by the ICSU (2003) and they are consistent with the views of the World Health Organization (WHO, 2002). These foods have been assessed for increased risks to human health by several national regulatory authorities (inter alia, Argentina, Brazil, Canada, China, the United Kingdom and the United States) using their national food safety procedures (ICSU). To date no verifiable untoward toxic or nutritionally deleterious effects resulting from the consumption of foods derived from genetically modified crops have been discovered anywhere in the world (GM Science Review Panel). Many millions of people have consumed foods derived from GM plants - mainly maize, soybean and oilseed rape - without any observed adverse effects (ICSU).
  3. Ronald, Pamela (May 5, 2011). "Plant Genetics, Sustainable Agriculture and Global Food Security". Genetics. 188: 11–20. doi:10.1534/genetics.111.128553. There is broad scientific consensus that genetically engineered crops currently on the market are safe to eat. After 14 years of cultivation and a cumulative total of 2 billion acres planted, no adverse health or environmental effects have resulted from commercialization of genetically engineered crops (Board on Agriculture and Natural Resources, Committee on Environmental Impacts Associated with Commercialization of Transgenic Plants, National Research Council and Division on Earth and Life Studies 2002). Both the U.S. National Research Council and the Joint Research Centre (the European Union's scientific and technical research laboratory and an integral part of the European Commission) have concluded that there is a comprehensive body of knowledge that adequately addresses the food safety issue of genetically engineered crops (Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health and National Research Council 2004; European Commission Joint Research Centre 2008). These and other recent reports conclude that the processes of genetic engineering and conventional breeding are no different in terms of unintended consequences to human health and the environment (European Commission Directorate-General for Research and Innovation 2010).
  4. But see also:

    Domingo, José L.; Bordonaba, Jordi Giné (2011). "A literature review on the safety assessment of genetically modified plants" (PDF). Environment International. 37: 734–742. doi:10.1016/j.envint.2011.01.003. In spite of this, the number of studies specifically focused on safety assessment of GM plants is still limited. However, it is important to remark that for the first time, a certain equilibrium in the number of research groups suggesting, on the basis of their studies, that a number of varieties of GM products (mainly maize and soybeans) are as safe and nutritious as the respective conventional non-GM plant, and those raising still serious concerns, was observed. Moreover, it is worth mentioning that most of the studies demonstrating that GM foods are as nutritional and safe as those obtained by conventional breeding, have been performed by biotechnology companies or associates, which are also responsible of commercializing these GM plants. Anyhow, this represents a notable advance in comparison with the lack of studies published in recent years in scientific journals by those companies.

    Krimsky, Sheldon (2015). "An Illusory Consensus behind GMO Health Assessment" (PDF). Science, Technology, & Human Values: 1–32. doi:10.1177/0162243915598381. I began this article with the testimonials from respected scientists that there is literally no scientific controversy over the health effects of GMOs. My investigation into the scientific literature tells another story.

    And contrast:

    Panchin, Alexander Y.; Tuzhikov, Alexander I. (January 14, 2016). "Published GMO studies find no evidence of harm when corrected for multiple comparisons". Critical Reviews in Biotechnology. doi:10.3109/07388551.2015.1130684. ISSN 0738-8551. Here, we show that a number of articles some of which have strongly and negatively influenced the public opinion on GM crops and even provoked political actions, such as GMO embargo, share common flaws in the statistical evaluation of the data. Having accounted for these flaws, we conclude that the data presented in these articles does not provide any substantial evidence of GMO harm.

    The presented articles suggesting possible harm of GMOs received high public attention. However, despite their claims, they actually weaken the evidence for the harm and lack of substantial equivalency of studied GMOs. We emphasize that with over 1783 published articles on GMOs over the last 10 years it is expected that some of them should have reported undesired differences between GMOs and conventional crops even if no such differences exist in reality.

    and

    Yang, Y.T.; Chen, B. (2016). "Governing GMOs in the USA: science, law and public health". Journal of the Science of Food and Agriculture. 96: 1851–1855. doi:10.1002/jsfa.7523. It is therefore not surprising that efforts to require labeling and to ban GMOs have been a growing political issue in the USA (citing Domingo and Bordonaba, 2011).

    Overall, a broad scientific consensus holds that currently marketed GM food poses no greater risk than conventional food... Major national and international science and medical associations have stated that no adverse human health effects related to GMO food have been reported or substantiated in peer-reviewed literature to date.

    Despite various concerns, today, the American Association for the Advancement of Science, the World Health Organization, and many independent international science organizations agree that GMOs are just as safe as other foods. Compared with conventional breeding techniques, genetic engineering is far more precise and, in most cases, less likely to create an unexpected outcome.

  5. "Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods" (PDF). American Association for the Advancement of Science. October 20, 2012. Retrieved February 8, 2016. The EU, for example, has invested more than €300 million in research on the biosafety of GMOs. Its recent report states: "The main conclusion to be drawn from the efforts of more than 130 research projects, covering a period of more than 25 years of research and involving more than 500 independent research groups, is that biotechnology, and in particular GMOs, are not per se more risky than e.g. conventional plant breeding technologies." The World Health Organization, the American Medical Association, the U.S. National Academy of Sciences, the British Royal Society, and every other respected organization that has examined the evidence has come to the same conclusion: consuming foods containing ingredients derived from GM crops is no riskier than consuming the same foods containing ingredients from crop plants modified by conventional plant improvement techniques.

    Pinholster, Ginger (October 25, 2012). "AAAS Board of Directors: Legally Mandating GM Food Labels Could "Mislead and Falsely Alarm Consumers"". American Association for the Advancement of Science. Retrieved February 8, 2016.

  6. "A decade of EU-funded GMO research (2001–2010)" (PDF). Directorate-General for Research and Innovation. Biotechnologies, Agriculture, Food. European Commission, European Union. 2010. doi:10.2777/97784. ISBN 978-92-79-16344-9. Retrieved February 8, 2016.
  7. "AMA Report on Genetically Modified Crops and Foods (online summary)". American Medical Association. January 2001. Retrieved March 19, 2016. A report issued by the scientific council of the American Medical Association (AMA) says that no long-term health effects have been detected from the use of transgenic crops and genetically modified foods, and that these foods are substantially equivalent to their conventional counterparts. (from online summary prepared by ISAAA)" "Crops and foods produced using recombinant DNA techniques have been available for fewer than 10 years and no long-term effects have been detected to date. These foods are substantially equivalent to their conventional counterparts. (from original report by AMA: ) {{cite web}}: External link in |quote= (help)

    "REPORT 2 OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH (A-12): Labeling of Bioengineered Foods" (PDF). American Medical Association. 2012. Retrieved March 19, 2016. Bioengineered foods have been consumed for close to 20 years, and during that time, no overt consequences on human health have been reported and/or substantiated in the peer-reviewed literature. {{cite web}}: Cite has empty unknown parameter: |1= (help)

  8. "Restrictions on Genetically Modified Organisms: United States. Public and Scholarly Opinion". Library of Congress. June 9, 2015. Retrieved February 8, 2016. Several scientific organizations in the US have issued studies or statements regarding the safety of GMOs indicating that there is no evidence that GMOs present unique safety risks compared to conventionally bred products. These include the National Research Council, the American Association for the Advancement of Science, and the American Medical Association. Groups in the US opposed to GMOs include some environmental organizations, organic farming organizations, and consumer organizations. A substantial number of legal academics have criticized the US's approach to regulating GMOs.
  9. "Genetically Engineered Crops: Experiences and Prospects". The National Academies of Sciences, Engineering, and Medicine (US). 2016. p. 149. Retrieved May 19, 2016. Overall finding on purported adverse effects on human health of foods derived from GE crops: On the basis of detailed examination of comparisons of currently commercialized GE with non-GE foods in compositional analysis, acute and chronic animal toxicity tests, long-term data on health of livestock fed GE foods, and human epidemiological data, the committee found no differences that implicate a higher risk to human health from GE foods than from their non-GE counterparts.
  10. "Frequently asked questions on genetically modified foods". World Health Organization. Retrieved February 8, 2016. Different GM organisms include different genes inserted in different ways. This means that individual GM foods and their safety should be assessed on a case-by-case basis and that it is not possible to make general statements on the safety of all GM foods.

    GM foods currently available on the international market have passed safety assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous application of safety assessments based on the Codex Alimentarius principles and, where appropriate, adequate post market monitoring, should form the basis for ensuring the safety of GM foods.

  11. Haslberger, Alexander G. (2003). "Codex guidelines for GM foods include the analysis of unintended effects". Nature Biotechnolgy. 21: 739–741. doi:10.1038/nbt0703-739. These principles dictate a case-by-case premarket assessment that includes an evaluation of both direct and unintended effects.
  12. Some medical organizations, including the British Medical Association, advocate further caution based upon the precautionary principle:

    "Genetically modified foods and health: a second interim statement" (PDF). British Medical Association. March 2004. Retrieved March 21, 2016. In our view, the potential for GM foods to cause harmful health effects is very small and many of the concerns expressed apply with equal vigour to conventionally derived foods. However, safety concerns cannot, as yet, be dismissed completely on the basis of information currently available.

    When seeking to optimise the balance between benefits and risks, it is prudent to err on the side of caution and, above all, learn from accumulating knowledge and experience. Any new technology such as genetic modification must be examined for possible benefits and risks to human health and the environment. As with all novel foods, safety assessments in relation to GM foods must be made on a case-by-case basis.

    Members of the GM jury project were briefed on various aspects of genetic modification by a diverse group of acknowledged experts in the relevant subjects. The GM jury reached the conclusion that the sale of GM foods currently available should be halted and the moratorium on commercial growth of GM crops should be continued. These conclusions were based on the precautionary principle and lack of evidence of any benefit. The Jury expressed concern over the impact of GM crops on farming, the environment, food safety and other potential health effects.

    The Royal Society review (2002) concluded that the risks to human health associated with the use of specific viral DNA sequences in GM plants are negligible, and while calling for caution in the introduction of potential allergens into food crops, stressed the absence of evidence that commercially available GM foods cause clinical allergic manifestations. The BMA shares the view that that there is no robust evidence to prove that GM foods are unsafe but we endorse the call for further research and surveillance to provide convincing evidence of safety and benefit.

  13. Funk, Cary; Rainie, Lee (January 29, 2015). "Public and Scientists' Views on Science and Society". Pew Research Center. Retrieved February 24, 2016. The largest differences between the public and the AAAS scientists are found in beliefs about the safety of eating genetically modified (GM) foods. Nearly nine-in-ten (88%) scientists say it is generally safe to eat GM foods compared with 37% of the general public, a difference of 51 percentage points.
  14. Marris, Claire (2001). "Public views on GMOs: deconstructing the myths". EMBO Reports. 2: 545–548. doi:10.1093/embo-reports/kve142.
  15. Final Report of the PABE research project (December 2001). "Public Perceptions of Agricultural Biotechnologies in Europe". Commission of European Communities. Retrieved February 24, 2016.
  16. Scott, Sydney E.; Inbar, Yoel; Rozin, Paul (2016). "Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States" (PDF). Perspectives on Psychological Science. 11 (3): 315–324. doi:10.1177/1745691615621275.
  17. "Restrictions on Genetically Modified Organisms". Library of Congress. June 9, 2015. Retrieved February 24, 2016.
  18. Bashshur, Ramona (February 2013). "FDA and Regulation of GMOs". American Bar Association. Retrieved February 24, 2016.
  19. Sifferlin, Alexandra (October 3, 2015). "Over Half of E.U. Countries Are Opting Out of GMOs". Time.
  20. Lynch, Diahanna; Vogel, David (April 5, 2001). "The Regulation of GMOs in Europe and the United States: A Case-Study of Contemporary European Regulatory Politics". Council on Foreign Relations. Retrieved February 24, 2016.

Proposal 2

The safety assessment of GM food is based on the science of substantial equivalence, which compares GM foods with similar traditional foods that have proven safe to eat over time. In countries with GM food regulations, approval by national regulatory agencies means that a GM food is considered to be as safe to eat as a comparable conventional food. In addition, there is no evidence to date of harm caused by eating GM food; for instance, a 2013 review of 1,783 scientific papers on GE crop safety concluded that "research conducted so far has not detected any significant hazard directly connected with the use of GM crops." Nonetheless, there is significant public mistrust of GM food and the science supporting it.
Citations

References

  1. Schauzu, Marianna (Apr 2000). "The concept of substantial equivalence in safety assessment of foods derived from genetically modified organisms" (PDF). AgBiotechNet. 2. Safety assessment criteria have been the subject of early discussions among competent international and national organisations and institutions and have led to the development of guidelines. Common to all guidelines is the principle of substantial equivalence as a reasonable approach to identifying differences between novel foods and their traditional counterparts.{{cite journal}}: CS1 maint: date and year (link)
  2. "GM food safety assessment: tools for trainers" (PDF). Food and Agriculture Organization (FAO). 2009. Retrieved 8 February 2016. To date, the safety assessment of foods derived from recombinant-DNA plants has been based on the principle that these products can be compared with conventional counterparts that have an established history of safe use. The objective is to determine if the food presents any new or altered hazard in comparison with its conventional counterpart. The goal is not to establish an absolute level of safety, but the food should be as safe as its conventional counterpart in the sense that there is a reasonable certainty that no harm will result from its intended use under the anticipated conditions of processing and consumption. (Page archive)
  3. As of 2014, 62 countries regulated GMOs for food: 28 countries approved both growing and import, 34 approved import only, and 11 approved field-testing only, for a total of 73 countries with GMO food and/or crop regulation. . Approval does not necessarily mean implementation, for example, some countries have approved GM crops for cultivation, but not actually grown them.
  4. New Genetics, Food and Agriculture: Scientific Discoveries - Societal Dilemas, ICSU (2003)
  5. ^ Frequently asked questions on genetically modified foods, WHO
  6. Nicolia, Alessandro; Manzo, Alberto; Veronesi, Fabio; Rosellini, Daniele (2013). "An overview of the last 10 years of genetically engineered crop safety research" (PDF). Critical Reviews in Biotechnology: 1–12. doi:10.3109/07388551.2013.823595. We have reviewed the scientific literature on GE crop safety for the last 10 years that catches the scientific consensus matured since GE plants became widely cultivated worldwide, and we can conclude that the scientific research conducted so far has not detected any significant hazard directly connected with the use of GM crops.
  7. Public and Scientists’ Views on Science and Society, Pew (2015)
  8. Can the Chinese Government Get Its People to Like G.M.O.s?, New Yorker (2015)

Proposal 3

The science community holds a variety of opinions on GMOs.
Citations

Proposal 4

A number of major American scientific organizations (American Medical Association, AAAS, National Research Council) and other international scientific organizations have embraced GMOs and assert that they are as safe for human consumption as food derived from conventional breeding, and hence should not require special testing or labeling if they are substantially equivalent to the conventional product. But other major scientific organizations disagree (e.g. British Medical Association, Royal Society of Canada, Public Health Australia), stating that GMOs need medium and long term studies or that current safety regulatory assessments are insufficient. Scientific review articles on GM food safety are divided between those following the American approach of assuming GMOs are Generally Recognized as Safe and those that are more skeptical. Numerous countries such as those in the E.U. use a different approach from U.S., following the Precautionary Principle by requiring additional testing and/or labeling under the Cartagena Protocol on Biosafety. Some countries ban GM food imports and/or production entirely. International organizations (WHO and the U.N.'s FAO) state that GM food that has been approved is safe to eat and no significant health hazards have arisen from GM food. (See also .)
Citations
  1. American Medical Association (2012), Policy H-480.958 Bioengineered (Genetically Engineered) Crops and Foods
  2. "Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods" (PDF). American Association for the Advancement of Science. October 20, 2012. Retrieved February 8, 2016. onsuming foods containing ingredients derived from GM crops is no riskier than consuming the same foods containing ingredients from crop plants modified by conventional plant improvement techniques.
  3. National Research Council. Safety of Genetically Engineered Foods: Approaches to Assessing Unintended Health Effects (2004). National Academies Press.
  4. "Restrictions on Genetically Modified Organisms: United States. Public and Scholarly Opinion". Library of Congress. June 9, 2015. Retrieved February 8, 2016. Several scientific organizations in the US have issued studies or statements regarding the safety of GMOs indicating that there is no evidence that GMOs present unique safety risks compared to conventionally bred products. These include the National Research Council, the American Association for the Advancement of Science, and the American Medical Association. Groups in the US opposed to GMOs include some environmental organizations, organic farming organizations, and consumer organizations. A substantial number of legal academics have criticized the US's approach to regulating GMOs.
  5. British Medical Association, Genetically modified foods and health: a second interim statement, March 2004. "The BMA supports the improvement of conventional and organic farming, and appreciates the concerns about cross contamination with GM crops. While we acknowledge the potential benefits of GM crops, the evidence for real benefit is not yet sufficiently persuasive to grow GM crops at the expense of conventionally derived alternatives that can be grown at least as effectively." "Members of the GM jury project* were briefed on various aspects of genetic modification by a diverse group of acknowledged experts in the relevant subjects. The GM jury reached the conclusion that the sale of GM foods currently available should be halted and the moratorium on commercial growth of GM crops should be continued. These conclusions were based on the precautionary principle and lack of evidence of any benefit. The Jury expressed concern over the impact of GM crops on farming, the environment, food safety and other potential health effects."
  6. Royal Society of Canada, Report "Elements of Precaution: Recommendations for the Regulation of Food Biotechnology in Canada", 2001
  7. Library of Congress Report: Restrictions on Genetically Modified Organisms (Canadian Scholarly Opinion), March 2014 (updated: 6/9/2015).
  8. Public Health Australia, "Policy-at-a-glance – Genetically Modified Foods Policy", September 2013
  9. ^ "State of Food and Agriculture 2003–2004. Agricultural Biotechnology: Meeting the Needs of the Poor. Health and environmental impacts of transgenic crops". Food and Agriculture Organization of the United Nations. Retrieved February 8, 2016. Currently available transgenic crops and foods derived from them have been judged safe to eat and the methods used to test their safety have been deemed appropriate." "These foods have been assessed for increased risks to human health by several national regulatory authorities (inter alia, Argentina, Brazil, Canada, China, the United Kingdom and the United States) using their national food safety procedures (ICSU). To date no verifiable untoward toxic or nutritionally deleterious effects resulting from the consumption of foods derived from genetically modified crops have been discovered anywhere in the world (GM Science Review Panel). Many millions of people have consumed foods derived from GM plants - mainly maize, soybean and oilseed rape - without any observed adverse effects (ICSU).

    The lack of evidence of negative effects, however, does not mean that new transgenic foods are without risk (ICSU, GM Science Review Panel). Scientists acknowledge that not enough is known about the long-term effects of transgenic (and most traditional) foods. It will be difficult to detect long-term effects because of many confounding factors such as the underlying genetic variability in foods and problems in assessing the impacts of whole foods. Furthermore, newer, more complex genetically transformed foods may be more difficult to assess and may increase the possibility of unintended effects.

  10. United Nations Environment Programme, International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD). Report: Report. "Agriculture Crossroads",English version, Global Report: pages 199–200, 2009. "The safety of GMO foods and feed is controversial due to limited available data, particularly for long-term nutritional consumption and chronic exposure....Food safety is a major issue in the GMO debate. Potential concerns include alteration in nutritional quality of foods, toxicity, antibiotic resistance, and allergenicity from consuming GM foods. The concepts and techniques used for evaluating food and feed safety have been outlined (WHO, 2005b), but the approval process of GM crops is considered inadequate (Spök et al., 2004). Under current practice, data are provided by the companies owning the genetic materials, making independent verification difficult or impossible. Recently, the data for regulatory approval of a new Bt-maize variety (Mon863) was challenged. Significant effects have been found on a number of measured parameters and a call has been made for more research to establish their safety (Seralini et al., 2007). For example, the systemic broad spectrum herbicide glyphosate is increasingly used on herbicide resistant soybean, resulting in the presence of measurable concentrations of residues and metabolites of glyphosate in soybean products (Arregui et al., 2004). In 1996, EPA reestablished pesticide thresholds for glyphosate in various soybean products setting standards for the presence of such residues in herbicide resistant crop plants (EPA, 1996ab). However, no data on long-term consumption of low doses of glyphosate metabolites have been collected." (199-200)
  11. Domingo, José L.; Bordonaba, Jordi Giné (2011). "A literature review on the safety assessment of genetically modified plants" (PDF). Environment International. 37: 734–742. doi:10.1016/j.envint.2011.01.003. In spite of this, the number of studies specifically focused on safety assessment of GM plants is still limited.
  12. Krimsky, Sheldon (2015). "An Illusory Consensus behind GMO Health Assessment" (PDF). Science, Technology, & Human Values: 1–32. doi:10.1177/0162243915598381. ight review articles were mixed in their assessment of the health effects of GMOs.
  13. Lynch, Diahanna; Vogel, David (April 5, 2001). "The Regulation of GMOs in Europe and the United States: A Case-Study of Contemporary European Regulatory Politics". Council on Foreign Relations. Retrieved February 24, 2016.
  14. ^ "Restrictions on Genetically Modified Organisms". Library of Congress. June 9, 2015. Retrieved February 8, 2016.
  15. Sifferlin, Alexandra (October 3, 2015). "Over Half of E.U. Countries Are Opting Out of GMOs". Time.
  16. "Frequently asked questions on genetically modified foods". World Health Organization. Retrieved February 8, 2016. Different GM organisms include different genes inserted in different ways. This means that individual GM foods and their safety should be assessed on a case-by-case basis and that it is not possible to make general statements on the safety of all GM foods.

    GM foods currently available on the international market have passed safety assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous application of safety assessments based on the Codex Alimentarius principles and, where appropriate, adequate post market monitoring, should form the basis for ensuring the safety of GM foods.

  17. International Council for Science, New Genetics, Food and Agriculture: Scientific Discoveries - Societal Dilemas, ICSU (2003), "Currently available genetically modified foods are safe to eat. Food safety assessments by national regulatory agencies in several countries have deemed currently available GM foods to be as safe to eat as their conventional counterparts and suitable for human consumption. This view is shared by several intergovernmental agencies, including the FAO/WHO Codex Alimentarius Commission on food safety, which has 162 member countries, the European Commission (EC), and the Organization for Economic Cooperation and Development (OECD).

    Further, there is no evidence of any ill effects from the consumption of foods containing genetically modified ingredients. Since GM crops were first cultivated commercially in 1995, many millions of meals have been made with GM ingredients and consumed by people in several countries, with no demonstrated adverse effects. Although currently available GM foods are considered safe to eat, this does not guarantee that no risks will be en countered as more foods are developed with novel characteristics. Ongoing evaluation of emerging products is required to ensure that new foods coming to market are safe for consumers. Food safety evaluation must be undertaken on a case-by-case basis. The extent of the risk evaluation should be proportionate to the possible risks involved with particular foods."

  18. Nicolia, Alessandro; Manzo, Alberto; Veronesi, Fabio; Rosellini, Daniele (2013). "An overview of the last 10 years of genetically engineered crop safety research" (PDF). Critical Reviews in Biotechnology: 1–12. doi:10.3109/07388551.2013.823595. We have reviewed the scientific literature on GE crop safety for the last 10 years that catches the scientific consensus matured since GE plants became widely cultivated worldwide, and we can conclude that the scientific research conducted so far has not detected any significant hazard directly connected with the use of GM crops.

Proposal 5

There is a scientific consensus that currently available food derived from GM crops poses no greater risk to human health than conventional food. There are benefits to farmers, the environment, and consumers, and evidence of harm caused by delays in adoption of genetically modified crops. However, scientists also say that it may be difficult to evaluate possible unintended effects, and that each GM food needs to be tested on a case-by-case basis before introduction. Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe. The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.
Citations
  1. Nicolia, Alessandro; Manzo, Alberto; Veronesi, Fabio; Rosellini, Daniele (2013). "An overview of the last 10 years of genetically engineered crop safety research" (PDF). Critical Reviews in Biotechnology: 1–12. doi:10.3109/07388551.2013.823595. We have reviewed the scientific literature on GE crop safety for the last 10 years that catches the scientific consensus matured since GE plants became widely cultivated worldwide, and we can conclude that the scientific research conducted so far has not detected any significant hazard directly connected with the use of GM crops.

    The literature about Biodiversity and the GE food/feed consumption has sometimes resulted in animated debate regarding the suitability of the experimental designs, the choice of the statistical methods or the public accessibility of data. Such debate, even if positive and part of the natural process of review by the scientific community, has frequently been distorted by the media and often used politically and inappropriately in anti-GE crops campaigns.

  2. ^ "State of Food and Agriculture 2003–2004. Agricultural Biotechnology: Meeting the Needs of the Poor. Health and environmental impacts of transgenic crops". Food and Agriculture Organization of the United Nations. Retrieved February 8, 2016. Currently available transgenic crops and foods derived from them have been judged safe to eat and the methods used to test their safety have been deemed appropriate. These conclusions represent the consensus of the scientific evidence surveyed by the ICSU (2003) and they are consistent with the views of the World Health Organization (WHO, 2002). These foods have been assessed for increased risks to human health by several national regulatory authorities (inter alia, Argentina, Brazil, Canada, China, the United Kingdom and the United States) using their national food safety procedures (ICSU). To date no verifiable untoward toxic or nutritionally deleterious effects resulting from the consumption of foods derived from genetically modified crops have been discovered anywhere in the world (GM Science Review Panel). Many millions of people have consumed foods derived from GM plants - mainly maize, soybean and oilseed rape - without any observed adverse effects (ICSU).

    The lack of evidence of negative effects, however, does not mean that new transgenic foods are without risk (ICSU, GM Science Review Panel). Scientists acknowledge that not enough is known about the long-term effects of transgenic (and most traditional) foods. It will be difficult to detect long-term effects because of many confounding factors such as the underlying genetic variability in foods and problems in assessing the impacts of whole foods. Furthermore, newer, more complex genetically transformed foods may be more difficult to assess and may increase the possibility of unintended effects.

  3. Panchin, Alexander Y.; Tuzhikov, Alexander I. (January 14, 2016). "Published GMO studies find no evidence of harm when corrected for multiple comparisons". Critical Reviews in Biotechnology. doi:10.3109/07388551.2015.1130684. ISSN 0738-8551. Here, we show that a number of articles some of which have strongly and negatively influenced the public opinion on GM crops and even provoked political actions, such as GMO embargo, share common flaws in the statistical evaluation of the data. Having accounted for these flaws, we conclude that the data presented in these articles does not provide any substantial evidence of GMO harm.

    The presented articles suggesting possible harm of GMOs received high public attention. However, despite their claims, they actually weaken the evidence for the harm and lack of substantial equivalency of studied GMOs. We emphasize that with over 1783 published articles on GMOs over the last 10 years it is expected that some of them should have reported undesired differences between GMOs and conventional crops even if no such differences exist in reality.

  4. "Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods" (PDF). American Association for the Advancement of Science. October 20, 2012. Retrieved February 8, 2016. The EU, for example, has invested more than €300 million in research on the biosafety of GMOs. Its recent report states: "The main conclusion to be drawn from the efforts of more than 130 research projects, covering a period of more than 25 years of research and involving more than 500 independent research groups, is that biotechnology, and in particular GMOs, are not per se more risky than e.g. conventional plant breeding technologies." The World Health Organization, the American Medical Association, the U.S. National Academy of Sciences, the British Royal Society, and every other respected organization that has examined the evidence has come to the same conclusion: consuming foods containing ingredients derived from GM crops is no riskier than consuming the same foods containing ingredients from crop plants modified by conventional plant improvement techniques.

    Pinholster, Ginger (October 25, 2012). "AAAS Board of Directors: Legally Mandating GM Food Labels Could "Mislead and Falsely Alarm Consumers"". American Association for the Advancement of Science. Retrieved February 8, 2016.

  5. "A decade of EU-funded GMO research (2001–2010)" (PDF). Directorate-General for Research and Innovation. Biotechnologies, Agriculture, Food. European Commission, European Union. 2010. doi:10.2777/97784. ISBN 978-92-79-16344-9. Retrieved February 8, 2016.
  6. "AMA Report on Genetically Modified Crops and Foods". American Medical Association. January 2001. Retrieved February 8, 2016. A report issued by the scientific council of the American Medical Association (AMA) says that no long-term health effects have been detected from the use of transgenic crops and genetically modified foods, and that these foods are substantially equivalent to their conventional counterparts.

    "REPORT 2 OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH (A-12): Labeling of Bioengineered Foods" (PDF). American Medical Association. 2012. Retrieved February 8, 2016. {{cite web}}: Cite has empty unknown parameter: |1= (help)

  7. "Restrictions on Genetically Modified Organisms: United States. Public and Scholarly Opinion". Library of Congress. June 9, 2015. Retrieved February 8, 2016. Several scientific organizations in the US have issued studies or statements regarding the safety of GMOs indicating that there is no evidence that GMOs present unique safety risks compared to conventionally bred products. These include the National Research Council, the American Association for the Advancement of Science, and the American Medical Association. Groups in the US opposed to GMOs include some environmental organizations, organic farming organizations, and consumer organizations. A substantial number of legal academics have criticized the US's approach to regulating GMOs.
  8. "Genetically Engineered Crops: Experiences and Prospects". The National Academies of Sciences, Engineering, and Medicine (US). 2016. p. 149. Retrieved May 19, 2016. Overall finding on purported adverse effects on human health of foods derived from GE crops: On the basis of detailed examination of comparisons of currently commercialized GE with non-GE foods in compositional analysis, acute and chronic animal toxicity tests, long-term data on health of livestock fed GE foods, and human epidemiological data, the committee found no differences that implicate a higher risk to human health from GE foods than from their non-GE counterparts.
  9. USDA (February 8, 2016). "Biotechnology Frequently Asked Questions, What are the benefits of Agricultural Biotechnology?". USDA. USDA. Retrieved April 8, 2016. The application of biotechnology in agriculture has resulted in benefits to farmers, producers, and consumers. Biotechnology has helped to make both insect pest control and weed management safer and easier while safeguarding crops against disease.
  10. Fernandez-Cornejo, Jorge (February 2014). "A report summary from the Economic Research Service, Genetically Engineered Crops in the United States" (PDF). USDA. USDA. Retrieved April 8, 2016. Farmers generally use less insecticide when they plant Bt corn and Bt cotton. Corn insecticide use by both GE seed adopters and nonadopters has decreased—only 9 percent of all U.S. corn farmers used insecticides in 2010. Insecticide use on corn farms declined from 0.21 pound per planted acre in 1995 to 0.02 pound in 2010. This is consistent with the steady decline in European corn borer populations over the last decade that has been shown to be a direct result of Bt adoption.
  11. "Reaping the benefits, Science and the sustainable intensification of global agriculture" (PDF). The Royal Society. The Royal Society. October 2009. Retrieved April 8, 2016. Because damage caused by insect feeding allows entry of mycotoxin-producing fungi, a secondary benefit is that Bt maize also has lower levels of fungal mycotoxins in the grain than non-Bt maize, thus enhancing its safety as food or feed.

    Control of insect pests with insecticides poses a greater risk of damage to non-target organisms than control with transgenic Bt protein.

    Control of weeds in conventional cropping systems is achieved by tillage combined with herbicide application. However, the use of herbicide-resistant plants provides good weed control with little or no tillage and so a secondary benefit from the use of these crops has been the spread of reduced tillage systems in which soil erosion is reduced.

  12. Roberts, Richard (2015). "65th Lindau Nobel Laureate Meeting. A Crime Against Humanity". Foundation Lindau Nobel Laureate Meetings. Retrieved April 8, 2016. By deliberately ignoring the science that underpins GMOs and painting horrific pictures of the dangers that might ensue, political motives are slowing the wide adoption of these technologies at the expense of the developing world. I will use Golden Rice as a clear example of the costs of these shortsighted policies. Millions of children have died or suffered developmental impairment because of a lack of Vitamin A in their diet. Golden Rice could reverse this, but has become a target of the Green parties because it is a GMO. This is foolish and dangerous. How many more children must die before this is considered a crime against humanity?
  13. Domingo, José L.; Bordonaba, Jordi Giné (2011). "A literature review on the safety assessment of genetically modified plants" (PDF). Environment International. 37: 734–742. doi:10.1016/j.envint.2011.01.003. In spite of this, the number of studies specifically focused on safety assessment of GM plants is still limited.
  14. "Frequently asked questions on genetically modified foods". World Health Organization. Retrieved February 8, 2016. Different GM organisms include different genes inserted in different ways. This means that individual GM foods and their safety should be assessed on a case-by-case basis and that it is not possible to make general statements on the safety of all GM foods.

    GM foods currently available on the international market have passed safety assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous application of safety assessments based on the Codex Alimentarius principles and, where appropriate, adequate post market monitoring, should form the basis for ensuring the safety of GM foods.

  15. Haslberger, Alexander G. (2003). "Codex guidelines for GM foods include the analysis of unintended effects". Nature Biotechnolgy. 21: 739–741. doi:10.1038/nbt0703-739. These principles dictate a case-by-case premarket assessment that includes an evaluation of both direct and unintended effects.
  16. Funk, Cary; Rainie, Lee (January 29, 2015). "Public and Scientists' Views on Science and Society". Pew Research Center. Retrieved February 24, 2016. The largest differences between the public and the AAAS scientists are found in beliefs about the safety of eating genetically modified (GM) foods. Nearly nine-in-ten (88%) scientists say it is generally safe to eat GM foods compared with 37% of the general public, a difference of 51 percentage points.
  17. Marris, Claire (2001). "Public views on GMOs: deconstructing the myths". EMBO Reports. 2: 545–548. doi:10.1093/embo-reports/kve142.
  18. Final Report of the PABE research project (December 2001). "Public Perceptions of Agricultural Biotechnologies in Europe". Commission of European Communities. Retrieved February 24, 2016.
  19. Scott, Sydney E.; Inbar, Yoel; Rozin, Paul (2016). "Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States" (PDF). Perspectives on Psychological Science. 11 (3): 315–324. doi:10.1177/1745691615621275.
  20. "Restrictions on Genetically Modified Organisms". Library of Congress. June 9, 2015. Retrieved February 24, 2016.
  21. Bashshur, Ramona (February 2013). "FDA and Regulation of GMOs". American Bar Association. Retrieved February 24, 2016.
  22. Sifferlin, Alexandra (October 3, 2015). "Over Half of E.U. Countries Are Opting Out of GMOs". Time.
  23. Lynch, Diahanna; Vogel, David (April 5, 2001). "The Regulation of GMOs in Europe and the United States: A Case-Study of Contemporary European Regulatory Politics". Council on Foreign Relations. Retrieved February 24, 2016.

Proposal 6

Currently available food derived from GM crops poses no greater risk to human health than conventional food, and GM food is tested on a case-by-case basis before its introduction. Nonetheless, in spite of this scientific consensus on safety, members of the public are much less likely than scientists to perceive GM foods as safe. The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.
Citations
  1. "Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods" (PDF). American Association for the Advancement of Science. October 20, 2012. Retrieved February 8, 2016. The EU, for example, has invested more than €300 million in research on the biosafety of GMOs. Its recent report states: "The main conclusion to be drawn from the efforts of more than 130 research projects, covering a period of more than 25 years of research and involving more than 500 independent research groups, is that biotechnology, and in particular GMOs, are not per se more risky than e.g. conventional plant breeding technologies." The World Health Organization, the American Medical Association, the U.S. National Academy of Sciences, the British Royal Society, and every other respected organization that has examined the evidence has come to the same conclusion: consuming foods containing ingredients derived from GM crops is no riskier than consuming the same foods containing ingredients from crop plants modified by conventional plant improvement techniques.

    Pinholster, Ginger (October 25, 2012). "AAAS Board of Directors: Legally Mandating GM Food Labels Could "Mislead and Falsely Alarm Consumers"". American Association for the Advancement of Science. Retrieved February 8, 2016.

  2. "A decade of EU-funded GMO research (2001–2010)" (PDF). Directorate-General for Research and Innovation. Biotechnologies, Agriculture, Food. European Commission, European Union. 2010. doi:10.2777/97784. ISBN 978-92-79-16344-9. Retrieved February 8, 2016.
  3. "AMA Report on Genetically Modified Crops and Foods (online summary)". American Medical Association. January 2001. Retrieved March 19, 2016. A report issued by the scientific council of the American Medical Association (AMA) says that no long-term health effects have been detected from the use of transgenic crops and genetically modified foods, and that these foods are substantially equivalent to their conventional counterparts. (from online summary prepared by ISAAA)" "Crops and foods produced using recombinant DNA techniques have been available for fewer than 10 years and no long-term effects have been detected to date. These foods are substantially equivalent to their conventional counterparts. (from original report by AMA: ) {{cite web}}: External link in |quote= (help)

    "REPORT 2 OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH (A-12): Labeling of Bioengineered Foods" (PDF). American Medical Association. 2012. Retrieved March 19, 2016. Bioengineered foods have been consumed for close to 20 years, and during that time, no overt consequences on human health have been reported and/or substantiated in the peer-reviewed literature. {{cite web}}: Cite has empty unknown parameter: |1= (help)

  4. "Restrictions on Genetically Modified Organisms: United States. Public and Scholarly Opinion". Library of Congress. June 9, 2015. Retrieved February 8, 2016. Several scientific organizations in the US have issued studies or statements regarding the safety of GMOs indicating that there is no evidence that GMOs present unique safety risks compared to conventionally bred products. These include the National Research Council, the American Association for the Advancement of Science, and the American Medical Association. Groups in the US opposed to GMOs include some environmental organizations, organic farming organizations, and consumer organizations. A substantial number of legal academics have criticized the US's approach to regulating GMOs.
  5. "Genetically Engineered Crops: Experiences and Prospects". The National Academies of Sciences, Engineering, and Medicine (US). 2016. p. 149. Retrieved May 19, 2016. Overall finding on purported adverse effects on human health of foods derived from GE crops: On the basis of detailed examination of comparisons of currently commercialized GE with non-GE foods in compositional analysis, acute and chronic animal toxicity tests, long-term data on health of livestock fed GE foods, and human epidemiological data, the committee found no differences that implicate a higher risk to human health from GE foods than from their non-GE counterparts.
  6. "Frequently asked questions on genetically modified foods". World Health Organization. Retrieved February 8, 2016. Different GM organisms include different genes inserted in different ways. This means that individual GM foods and their safety should be assessed on a case-by-case basis and that it is not possible to make general statements on the safety of all GM foods.

    GM foods currently available on the international market have passed safety assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous application of safety assessments based on the Codex Alimentarius principles and, where appropriate, adequate post market monitoring, should form the basis for ensuring the safety of GM foods.

  7. Haslberger, Alexander G. (2003). "Codex guidelines for GM foods include the analysis of unintended effects". Nature Biotechnolgy. 21: 739–741. doi:10.1038/nbt0703-739. These principles dictate a case-by-case premarket assessment that includes an evaluation of both direct and unintended effects.
  8. Some medical organizations, including the British Medical Association, advocate further caution based upon the precautionary principle:

    "Genetically modified foods and health: a second interim statement" (PDF). British Medical Association. March 2004. Retrieved March 21, 2016. In our view, the potential for GM foods to cause harmful health effects is very small and many of the concerns expressed apply with equal vigour to conventionally derived foods. However, safety concerns cannot, as yet, be dismissed completely on the basis of information currently available.

    When seeking to optimise the balance between benefits and risks, it is prudent to err on the side of caution and, above all, learn from accumulating knowledge and experience. Any new technology such as genetic modification must be examined for possible benefits and risks to human health and the environment. As with all novel foods, safety assessments in relation to GM foods must be made on a case-by-case basis.

    Members of the GM jury project were briefed on various aspects of genetic modification by a diverse group of acknowledged experts in the relevant subjects. The GM jury reached the conclusion that the sale of GM foods currently available should be halted and the moratorium on commercial growth of GM crops should be continued. These conclusions were based on the precautionary principle and lack of evidence of any benefit. The Jury expressed concern over the impact of GM crops on farming, the environment, food safety and other potential health effects.

    The Royal Society review (2002) concluded that the risks to human health associated with the use of specific viral DNA sequences in GM plants are negligible, and while calling for caution in the introduction of potential allergens into food crops, stressed the absence of evidence that commercially available GM foods cause clinical allergic manifestations. The BMA shares the view that that there is no robust evidence to prove that GM foods are unsafe but we endorse the call for further research and surveillance to provide convincing evidence of safety and benefit.

  9. Nicolia, Alessandro; Manzo, Alberto; Veronesi, Fabio; Rosellini, Daniele (2013). "An overview of the last 10 years of genetically engineered crop safety research" (PDF). Critical Reviews in Biotechnology: 1–12. doi:10.3109/07388551.2013.823595. We have reviewed the scientific literature on GE crop safety for the last 10 years that catches the scientific consensus matured since GE plants became widely cultivated worldwide, and we can conclude that the scientific research conducted so far has not detected any significant hazard directly connected with the use of GM crops.

    The literature about Biodiversity and the GE food/feed consumption has sometimes resulted in animated debate regarding the suitability of the experimental designs, the choice of the statistical methods or the public accessibility of data. Such debate, even if positive and part of the natural process of review by the scientific community, has frequently been distorted by the media and often used politically and inappropriately in anti-GE crops campaigns.

  10. "State of Food and Agriculture 2003–2004. Agricultural Biotechnology: Meeting the Needs of the Poor. Health and environmental impacts of transgenic crops". Food and Agriculture Organization of the United Nations. Retrieved February 8, 2016. Currently available transgenic crops and foods derived from them have been judged safe to eat and the methods used to test their safety have been deemed appropriate. These conclusions represent the consensus of the scientific evidence surveyed by the ICSU (2003) and they are consistent with the views of the World Health Organization (WHO, 2002). These foods have been assessed for increased risks to human health by several national regulatory authorities (inter alia, Argentina, Brazil, Canada, China, the United Kingdom and the United States) using their national food safety procedures (ICSU). To date no verifiable untoward toxic or nutritionally deleterious effects resulting from the consumption of foods derived from genetically modified crops have been discovered anywhere in the world (GM Science Review Panel). Many millions of people have consumed foods derived from GM plants - mainly maize, soybean and oilseed rape - without any observed adverse effects (ICSU).
  11. Ronald, Pamela (May 5, 2011). "Plant Genetics, Sustainable Agriculture and Global Food Security". Genetics. 188: 11–20. doi:10.1534/genetics.111.128553. There is broad scientific consensus that genetically engineered crops currently on the market are safe to eat. After 14 years of cultivation and a cumulative total of 2 billion acres planted, no adverse health or environmental effects have resulted from commercialization of genetically engineered crops (Board on Agriculture and Natural Resources, Committee on Environmental Impacts Associated with Commercialization of Transgenic Plants, National Research Council and Division on Earth and Life Studies 2002). Both the U.S. National Research Council and the Joint Research Centre (the European Union's scientific and technical research laboratory and an integral part of the European Commission) have concluded that there is a comprehensive body of knowledge that adequately addresses the food safety issue of genetically engineered crops (Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health and National Research Council 2004; European Commission Joint Research Centre 2008). These and other recent reports conclude that the processes of genetic engineering and conventional breeding are no different in terms of unintended consequences to human health and the environment (European Commission Directorate-General for Research and Innovation 2010).
  12. But see also:

    Domingo, José L.; Bordonaba, Jordi Giné (2011). "A literature review on the safety assessment of genetically modified plants" (PDF). Environment International. 37: 734–742. doi:10.1016/j.envint.2011.01.003. In spite of this, the number of studies specifically focused on safety assessment of GM plants is still limited. However, it is important to remark that for the first time, a certain equilibrium in the number of research groups suggesting, on the basis of their studies, that a number of varieties of GM products (mainly maize and soybeans) are as safe and nutritious as the respective conventional non-GM plant, and those raising still serious concerns, was observed. Moreover, it is worth mentioning that most of the studies demonstrating that GM foods are as nutritional and safe as those obtained by conventional breeding, have been performed by biotechnology companies or associates, which are also responsible of commercializing these GM plants. Anyhow, this represents a notable advance in comparison with the lack of studies published in recent years in scientific journals by those companies.

    Krimsky, Sheldon (2015). "An Illusory Consensus behind GMO Health Assessment" (PDF). Science, Technology, & Human Values: 1–32. doi:10.1177/0162243915598381. I began this article with the testimonials from respected scientists that there is literally no scientific controversy over the health effects of GMOs. My investigation into the scientific literature tells another story.

    And contrast:

    Panchin, Alexander Y.; Tuzhikov, Alexander I. (January 14, 2016). "Published GMO studies find no evidence of harm when corrected for multiple comparisons". Critical Reviews in Biotechnology. doi:10.3109/07388551.2015.1130684. ISSN 0738-8551. Here, we show that a number of articles some of which have strongly and negatively influenced the public opinion on GM crops and even provoked political actions, such as GMO embargo, share common flaws in the statistical evaluation of the data. Having accounted for these flaws, we conclude that the data presented in these articles does not provide any substantial evidence of GMO harm.

    The presented articles suggesting possible harm of GMOs received high public attention. However, despite their claims, they actually weaken the evidence for the harm and lack of substantial equivalency of studied GMOs. We emphasize that with over 1783 published articles on GMOs over the last 10 years it is expected that some of them should have reported undesired differences between GMOs and conventional crops even if no such differences exist in reality.

    and

    Yang, Y.T.; Chen, B. (2016). "Governing GMOs in the USA: science, law and public health". Journal of the Science of Food and Agriculture. 96: 1851–1855. doi:10.1002/jsfa.7523. It is therefore not surprising that efforts to require labeling and to ban GMOs have been a growing political issue in the USA (citing Domingo and Bordonaba, 2011).

    Overall, a broad scientific consensus holds that currently marketed GM food poses no greater risk than conventional food... Major national and international science and medical associations have stated that no adverse human health effects related to GMO food have been reported or substantiated in peer-reviewed literature to date.

    Despite various concerns, today, the American Association for the Advancement of Science, the World Health Organization, and many independent international science organizations agree that GMOs are just as safe as other foods. Compared with conventional breeding techniques, genetic engineering is far more precise and, in most cases, less likely to create an unexpected outcome.

  13. Funk, Cary; Rainie, Lee (January 29, 2015). "Public and Scientists' Views on Science and Society". Pew Research Center. Retrieved February 24, 2016. The largest differences between the public and the AAAS scientists are found in beliefs about the safety of eating genetically modified (GM) foods. Nearly nine-in-ten (88%) scientists say it is generally safe to eat GM foods compared with 37% of the general public, a difference of 51 percentage points.
  14. Marris, Claire (2001). "Public views on GMOs: deconstructing the myths". EMBO Reports. 2: 545–548. doi:10.1093/embo-reports/kve142.
  15. Final Report of the PABE research project (December 2001). "Public Perceptions of Agricultural Biotechnologies in Europe". Commission of European Communities. Retrieved February 24, 2016.
  16. Scott, Sydney E.; Inbar, Yoel; Rozin, Paul (2016). "Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States" (PDF). Perspectives on Psychological Science. 11 (3): 315–324. doi:10.1177/1745691615621275.
  17. "Restrictions on Genetically Modified Organisms". Library of Congress. June 9, 2015. Retrieved February 24, 2016.
  18. Bashshur, Ramona (February 2013). "FDA and Regulation of GMOs". American Bar Association. Retrieved February 24, 2016.
  19. Sifferlin, Alexandra (October 3, 2015). "Over Half of E.U. Countries Are Opting Out of GMOs". Time.
  20. Lynch, Diahanna; Vogel, David (April 5, 2001). "The Regulation of GMOs in Europe and the United States: A Case-Study of Contemporary European Regulatory Politics". Council on Foreign Relations. Retrieved February 24, 2016.

Proposal 7

Add new proposals below.

Comments

Return to Introduction.

Comments by Editor

Please copy and paste this section below your section, for the next editor.