Misplaced Pages

2-Ethylanthraquinone

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Scyrme (talk | contribs) at 22:15, 31 May 2023 (GHS omission rule). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 22:15, 31 May 2023 by Scyrme (talk | contribs) (GHS omission rule)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) Intermediate Chemical in H2O2 Synthesis
2-Ethylanthraquinone
Structural formula of 2-Ethylanthraquinone
Ball-and-stick model
Names
Preferred IUPAC name 2-Ethylanthracene-9,10-dione
Other names 2-Ethyl-9,10-anthracenedione
Identifiers
CAS Number
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.001.396 Edit this at Wikidata
EC Number
  • 201-535-4
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C16H12O2/c1-2-10-7-8-13-14(9-10)16(18)12-6-4-3-5-11(12)15(13)17/h3-9H,2H2,1H3Key: SJEBAWHUJDUKQK-UHFFFAOYSA-N
  • InChI=1/C16H12O2/c1-2-10-7-8-13-14(9-10)16(18)12-6-4-3-5-11(12)15(13)17/h3-9H,2H2,1H3Key: SJEBAWHUJDUKQK-UHFFFAOYAW
SMILES
  • O=C2c1c(cccc1)C(=O)c3c2ccc(c3)CC
Properties
Chemical formula C16H12O2
Molar mass 236.27 g/mol
Appearance white to yellowish crystals or powder
Density 1.231g/cm3
Melting point 105 °C (221 °F; 378 K)
Boiling point 415.4 @ 760mmHg
Hazards
GHS labelling:
Pictograms GHS08: Health hazardGHS09: Environmental hazard
Signal word Danger
Hazard statements H350, H373, H410
Precautionary statements P201, P202, P260, P273, P281, P308+P313, P314, P391, P405, P501
Flash point 155.4 °C (311.7 °F; 428.5 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

2-Ethylanthraquinone is an organic compound that is a derivative of anthraquinone. This pale yellow solid is used in the industrial production of hydrogen peroxide (H2O2).

Production

2-Ethylanthraquinone is prepared from the reaction of phthalic anhydride and ethylbenzene:

C6H4(CO)2O + C6H5Et → C6H4(CO)2C6H3Et + H2O.

Both phthalic anhydride and ethylbenzene are readily available, being otherwise used in the large-scale production of plastics.

Uses

Hydrogen peroxide is produced industrially by the anthraquinone process which involves using 2-alkyl-9,10-anthraquinones for hydrogenation. Many derivatives of anthraquinone are used but 2-ethylanthraquinone is common because of its high selectivity. The hydrogenation of the unsubstituted ring can reach 90% selectivity by using 2-ethylanthraquinone. Hydrogenation follows the Riedl-Pfleiderer, or autoxidation, process:

The Riedl-Pfleiderer process.
The Riedl-Pfleiderer process.

The hydrogenation of 2-ethylanthraquinone is catalyzed by palladium. Hydrogenation produces both 2-ethylanthrahydroquinone and tetrahydroanthraquinone. The tetrahydro derivative of 2-alkylanthraquinone is easily hydrogenated but is more difficult to oxidize. The formation of the tetrahydro derivative can be suppressed through the selection of catalysts, solvents, and reaction conditions. Some suggested solvent mixtures are polyalkylated benzenes and alkyl phosphates or tetraalkyl ureas, trimethylbenzenes and alkylcyclohexanol esters, and methylnaphthalene and nonyl alcohols.

References

  1. Goor, G.; Glenneberg, J.; Jacobi, S. (2007). "Hydrogen Peroxide". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a13_443.pub2.
  2. Römpp CD 2006, Georg Thieme Verlag 2006
Category: