Misplaced Pages

1,1-Dimethylurea

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by DMacks (talk | contribs) at 10:48, 18 December 2024 (Start this thing). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 10:48, 18 December 2024 by DMacks (talk | contribs) (Start this thing)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
1,1-Dimethylurea
Names
IUPAC name 1,1-Dimethylurea
Other names N,N-Dimethylurea
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

1,1-Dimethylurea (DMU) is a urea derivative used as a polar solvent and a reagent in organic reactions. It is a solid, but forms a eutectic with a low melting point in combination with various hydroxylic additives that can serve as a environmentally sustainable solvent for various chemical reactions. The unsubstituted nitrogen can serve as a nucleophile for a wide range of reactions, including reaction with acyl halides to form acylureas, coupling with vinyl halides, and multi-component condensation reaction with aldehydes. The unsubstituted amide-like portion can undergo oxidative coupling with alkenes to give dihydrooxazoles.

References

  1. Kotha, Sambasivarao; Ali, Rashid; Srinivas, Venu; Krishna, Nimita G. (2015). "Diversity-oriented approach to spirocycles with indole moiety via Fischer indole cyclization, olefin metathesis and Suzuki–Miyaura cross-coupling reactions". Tetrahedron. 71: 129–138. doi:10.1016/j.tet.2014.11.024.
  2. Lu, Jun; Li, Xiao-Tang; Ma, Er-Qian; Mo, Li-Ping; Zhang, Zhan-Hui (2014). "Superparamagnetic CuFeO2 Nanoparticles in Deep Eutectic Solvent: An Efficient and Recyclable Catalytic System for the Synthesis of Imidazo[1,2- a ]pyridines". ChemCatChem. 6 (10): 2854–2859. doi:10.1002/cctc.201402415.
  3. Imperato, Giovanni; Eibler, Ernst; Niedermaier, Julia; König, Burkhard (2005). "Low-melting sugar–urea–salt mixtures as solvents for Diels–Alder reactions". Chem. Commun. (9): 1170–1172. doi:10.1039/b414515a. PMID 15726181.
  4. Ilgen, Florian; König, Burkhard (2009). "Organic reactions in low melting mixtures based on carbohydrates and l-carnitine—a comparison". Green Chemistry. 11 (6): 848. doi:10.1039/B816551C.
  5. Sobol, Eyal; Bialer, Meir; Yagen, Boris (2004). "Tetramethylcyclopropyl Analogue of a Leading Antiepileptic Drug, Valproic Acid. Synthesis and Evaluation of Anticonvulsant Activity of Its Amide Derivatives". Journal of Medicinal Chemistry. 47 (17): 4316–4326. doi:10.1021/jm0498351. PMID 15294003.
  6. Belfrage, Anna Karin; Gising, Johan; Svensson, Fredrik; Åkerblom, Eva; Sköld, Christian; Sandström, Anja (2015). "Efficient and Selective Palladium-Catalysed C-3 Urea Couplings to 3,5-Dichloro-2(1 H )-pyrazinones". European Journal of Organic Chemistry (5): 978–986. doi:10.1002/ejoc.201403405.
  7. International Journal of Pharmaceutical Sciences and Research. 9 (8). 2018. doi:10.13040/IJPSR.0975-8232.9(8).3322-27. {{cite journal}}: Missing or empty |title= (help)
  8. Wu, Fan; Alom, Nur-E; Ariyarathna, Jeewani P.; Naß, Johannes; Li, Wei (2019). "Regioselective Formal [3+2] Cycloadditions of Urea Substrates with Activated and Unactivated Olefins for Intermolecular Olefin Aminooxygenation". Angewandte Chemie International Edition. 58 (34): 11676–11680. doi:10.1002/anie.201904662. PMID 31211504.
Stub icon

This article about an organic compound is a stub. You can help Misplaced Pages by expanding it.

Categories: