This is an old revision of this page, as edited by Nitrobutane (talk | contribs) at 20:11, 29 July 2020 (→Commercialisation: Removed promotional waffle, name-drops. 'High energy density' is meaningless, should have been numbers; and it's hard to imagine a battery that doesn't 'focus on energy applications'). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 20:11, 29 July 2020 by Nitrobutane (talk | contribs) (→Commercialisation: Removed promotional waffle, name-drops. 'High energy density' is meaningless, should have been numbers; and it's hard to imagine a battery that doesn't 'focus on energy applications')(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)Commercialisation
At present, there are a few companies around the world developing commercial sodium-ion batteries for various different applications. The major companies are listed below.
Faradion Limited: Founded in 2011 in the United Kingdom, their chief cell design uses oxide cathodes with hard carbon anode and a liquid electrolyte. Their pouch cells have energy densities comparable to commercial Li-ion batteries (140 – 150 Wh/kg at cell-level) with good rate performance till 3C and cycle lives of 300 (100% depth of discharge) to over 1,000 cycles (80% depth of discharge). The viability of its scaled-up battery packs for e-bike and e-scooter applications has been shown. They have also demonstrated transporting sodium-ion cells in the shorted state (at 0 V), effectively eliminating any risks from commercial transport of such cells. The company's CTO is Dr. Jerry Barker, co-inventor of several popularly used lithium-ion and sodium-ion electrode materials such as LiM1M2PO4, Li3M2(PO4)3, and Na3M2(PO4)2F3ref></ref> and the carbothermal reduction method of synthesis for battery electrode materials.
Tiamat: Founded in 2017 in France, TIAMAT has spun off from the CNRS/CEA following researches carried out by a task force around the Na-ion technology funded within the RS2E network and a H2020 EU-project called NAIADES. With an exclusive licence for 6 patents from the CNRS and CEA, the solution developed by TIAMAT focuses on the development of 18650-format cylindrical full cells based on polyanionic materials. With an energy density between 100 Wh/kg to 120 Wh/kg for this format, the technology targets applications in the fast charge and discharge markets. More than 4000 cycles have been recorded in terms of cycle life and rate capabilities exceed the 80% retention for a 6 min charge. With a nominal operating voltage at 3.7 V, Na-ion cells are well-placed in the developing power market. The start-up has demonstrated several operational prototypes: e-bikes, e-scooters, start & stop 12V batteries, 48V batteries.
Aquion Energy developed aqueous sodium-ion batteries and in 2014 offered a commercially available sodium-ion battery with cost/kWh similar to a lead-acid battery for use as a backup power source for electricity micro-grids. According to the company, it was 85 percent efficient. Aquion Energy filed for Chapter 11 Bankruptcy in March 2017.
Novasis Energies, Inc.: Originated from battery pioneer Prof. John B. Goodenough's group at the University of Texas at Austin in 2010 and further developed at the Sharp Laboratories of America. Reliant on Prussian Blue analogues as the cathode and hard carbon as the anode, their sodium-ion batteries can deliver 100 – 130 Wh/kg with good cycling stability over 500 cycles and good rate capability till 10C.
HiNa Battery Technology Co., Ltd: A spin-off from the Chinese Academy of Sciences (CAS), HiNa Battery was established in 2017 building off of the research conducted by Prof. Hu Yong-sheng's group at the Institute of Physics at CAS. HiNa's sodium-ion batteries are based on Na-Fe-Mn-Cu based oxide cathodes and anthracite-based carbon anode and can deliver 120 Wh/kg energy density. In 2019, it was reported that HiNa installed a 100 kWh sodium-ion battery power bank in East China.
Natron Energy: A spin-off from Stanford University, Natron Energy uses Prussian Blue analogues for both cathode and anode with an aqueous electrolyte.
Altris AB: In 2017 three researchers from Uppsala University, Sweden collaborated with EIT InnoEnergy to bring their invention in the field of rechargeable sodium batteries to commercialisation, leading to formation of Altris AB. Altris AB is a spin-off company coming from the Ångström Advanced Battery Centre lead by Prof. Kristina Edström at Uppsala University. EIT InnoEnergy has invested in the company from its inception. The company is selling a proprietary iron based Prussian blue analogue for the positive electrode in non-aqueous sodium ion batteries that use hard carbon as the anode.
- ^ Cite error: The named reference
:1
was invoked but never defined (see the help page). - Cite error: The named reference
:2
was invoked but never defined (see the help page). - "Sodium to boost batteries by 2020". 2017 une année avec le CNRS. 2018-03-26. Retrieved 2019-09-05.
- Broux, T. et al.; (2018) “High Rate Performance for Carbon-Coated Na3V2(PO4)2F3 in Na-Ion Batteries”. Small Methods. 1800215. DOI: 10.1002/smtd.201800215
- Ponrouch, A. et al.; (2013) “Towards high energy density sodium ion batteries through electrolyte optimization”. Energy & Environmental Science. 6: 2361 – 2369. DOI: 10.1039/C3EE41379A.</>Hall, N.; Boulineau, S.; Croguennec, L.; Launois, S.; Masquelier, C.; Simonin, L.; “Method for preparing a Na3V2(PO4)2F3 particulate material”. United States Patent Application No. 2018/0297847. Filed by Universite De Picardie on October 13, 2015.
- Bullis, Kevin. "A Much Cheaper Grid Battery Comes to Market". MIT Technology Review. Retrieved 2019-09-05.
- "Sodium-ion Battery Power Bank Operational in East China---Chinese Academy of Sciences". english.cas.cn. Retrieved 2019-09-05.