This is an old revision of this page, as edited by ClueBot NG (talk | contribs) at 02:46, 21 March 2022 (Reverting possible vandalism by Xkirex to version by Boghog. Report False Positive? Thanks, ClueBot NG. (4149378) (Bot)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 02:46, 21 March 2022 by ClueBot NG (talk | contribs) (Reverting possible vandalism by Xkirex to version by Boghog. Report False Positive? Thanks, ClueBot NG. (4149378) (Bot))(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) Medical condition were the tendon at the back of the ankle breaks Medical conditionAchilles tendon rupture | |
---|---|
Other names | Achilles tendon tear, Achilles rupture |
The achilles tendon | |
Specialty | Orthopedics, emergency medicine |
Symptoms | Pain in the heel |
Usual onset | Sudden |
Causes | Forced plantar flexion of the foot, direct trauma, long-standing tendonitis |
Risk factors | Fluoroquinolones, significant change in exercise, rheumatoid arthritis, gout, corticosteroids |
Diagnostic method | Based on symptoms and examination, supported by medical imaging |
Differential diagnosis | Achilles tendinitis, ankle sprain, avulsion fracture of the calcaneus |
Treatment | Casting or surgery |
Frequency | 1 per 10,000 people per year |
Achilles tendon rupture is when the Achilles tendon, at the back of the ankle, breaks. Symptoms include the sudden onset of sharp pain in the heel. A snapping sound may be heard as the tendon breaks and walking becomes difficult.
Rupture typically occurs as a result of a sudden bending up of the foot when the calf muscle is engaged, direct trauma, or long-standing tendonitis. Other risk factors include the use of fluoroquinolones, a significant change in exercise, rheumatoid arthritis, gout, or corticosteroid use. Diagnosis is typically based on symptoms and examination and supported by medical imaging.
Prevention may include stretching before activity. Treatment may be by surgery repair or casting with the toes somewhat pointed down. Relatively rapid return to weight bearing (within 4 weeks) appears okay. While surgery traditionally results in a small decrease in the risk of re-rupture, the risk of other complications is greater. Additionally rapid rehabilitation may remove this difference in ruptures. If appropriate treatment does not occur within 4 weeks of the injury outcomes are not as good.
Achilles tendon rupture occurs in about 1 per 10,000 people per year. Males are more commonly affected than females. People in their 30s to 50s are most commonly affected.
Signs and symptoms
The main symptom of an Achilles tendon rupture is the sudden onset of sharp pain in the heel. Additionally, a snap or "pop" may be heard as the tendon breaks. Some people describe the pain as a hit or kick behind the lower leg. There is difficulty walking immediately. It may be difficult to push off or stand on the toes of the injured leg. Swelling may be present around the heel.
Causes
The Achilles tendon is most often injured by sudden downward or upward movement of the foot. Or by forced upward flexion of the foot outside its normal range of motion.
Other ways the Achilles tendon can be torn involve sudden direct trauma or damage to the tendon. Sudden use of the Achilles after prolonged periods of inactivity, such as bed rest or leg injury. Some other common tears can happen from intense sports overuse. Twisting or jerking motions can also contribute to injury.
Some antibiotics, such as levofloxacin, may increase the risk of tendon rupture. These antibiotics are known as Fluoroquinolones.
Many people may suffer from an Achilles rupture or tear. This includes recreational athletes, older people, those with previous Achilles tendon injury. Tendon injections, quinolone use, and extreme changes in exercise intensity can contribute.
Most cases of Achilles tendon rupture are traumatic sports injuries. The average age of patients is 29–40 years with a male-to-female ratio of nearly 20:1. Yet, recent studies have shown that Achilles tendon ruptures are rising in all ages up to 60 years of age. This is because remaining active has become popularized around the world.
Quinolone antibiotics can cause several forms of tendon injury and rupture. The risk is higher in people who are older than 60, and also taking corticosteroids, or have kidney disease. Risk also increases with dose amount and taking them for longer periods of time. As of 2016 the mechanism through which quinolones cause this, was unclear.
Anatomy
The Achilles tendon is the strongest and thickest tendon in the body. It connects the calf muscles to the heal bone of the foot. The calf muscles are the gastrocnemius, soleus and the heel bone is called the calcaneus. It is approximately 15 centimeters (5.9 inches) long and begins near the middle part of the calf. Contraction of the calf muscles flexes the foot down. This is important in activities such as walking, jumping, and running. The Achilles tendon receives its blood supply from its muscular and tendon junction. Its nerve supply is from the sural nerve and to a lesser degree from the tibial nerve.
Diagnosis
Diagnosis is based on symptoms and history of the event. People describe it like being kicked or shot behind the ankle. During physical examination, a gap may be felt above the heel unless swelling is present. A common physical exam test the doctor or provider may perform is the Simmonds' test (aka Thompson test). To perform the test, have the person lay on their stomach, face down, and with their feet hanging from the exam table. The test is positive if squeezing the calf muscles of the affected side results in no movement (no passive plantarflexion) of the foot. The test is negative with an intact Achilles tendon and squeezing the calf muscle results in the foot flexing down. Walking is usually impaired, as the person will be unable to step off the ground using the injured leg. The person will also be unable to stand up on the toes of that leg, and pointing the foot downward (plantarflexion) is impaired. Pain may be severe, and swelling around the ankle is common.
An ultrasound scan is sometimes required to clarify or confirm the diagnosis. Once diagnosis is made, ultrasound imaging is an effective way to monitor the healing progress of the tendon over time. An ultrasound is recommended over MRI and MRI is generally not needed.
Imaging
Ultrasonography can be used to determine the tendon thickness, character, and presence of a tear. It works by sending harmless high frequencies of sound waves through the body. Some of these sound waves reflect back off the spaces between fluid and soft tissue or bone. These reflected images are analyzed and created into an image. These images capture in real time and are helpful in detecting movement of the tendon and visualizing injuries or tears. This device makes it possible to identify injuries and observe healing over time. Ultrasound is inexpensive and involves no harmful radiation. It is operator-dependent and so requires a level of skill and practice for it to be used effectively.
MRI can be used to distinguish incomplete ruptures from degeneration of the Achilles tendon. MRI can also distinguish between paratenonitis, tendinosis, and bursitis. This technique uses a strong uniform magnetic field to align millions of protons running through the body. These protons are then bombarded with radio waves that knock some of them out of alignment. When these protons return they emit their own unique radio waves that is analyzed by a computer in 3D to create a sharp cross sectional image of the area. MRI provides excellent soft tissue imaging making it easier for technicians to spot tears or other injuries.
Radiography can also be used to indirectly identify Achilles tendon tears. Radiography uses X-rays to analyze the point of injury. This is not very effective at identifying soft tissue injuries. X-rays are created when high energy electrons hit a metal source. X-ray images are acquired by utilizing the different densities of the bone or tissue. When these rays pass through tissue they are captured on film. X-rays are generally best for dense objects such as bone while soft tissue is shown poorly. Radiography is not the best for assessing an Achilles tendon injury. It is more useful for ruling out other injuries such as heal bone fractures.
Treatment
Treatment options include surgical and non-surgical approaches. Surgery has traditionally been shown to have a lower risk of re-rupture, however, it has a higher rate of short term complications compared to non-surgical approaches. Complications include deep vein thrombosis, sural nerve injury, would infection, and pulmonary embolism. The main complication following a non-surgical approach was deep vein thrombosis, while the main complication following a surgical approach was infection. Additionally certain rehabilitation techniques (early weight-bearing in an orthosis and early range of movement exercises) appear to have shown similar rates of re-rupture compared to surgery.
In centers that do not have early range of motion rehabilitation available, surgical repair is preferred to decrease re-rupture rates.
Surgery
There are two different types of surgeries; open surgery and percutaneous surgery.
During an open surgery, an incision is made in the back of the leg and the Achilles tendon is stitched together. In a complete or serious rupture the tendon of plantaris or another vestigial muscle is harvested and wrapped around the Achilles tendon, increasing the strength of the repaired tendon. If the tissue quality is poor, e.g. the injury has been neglected, the surgeon might use a reinforcement mesh (collagen, Artelon or other degradable material). If there is both significant Achilles tendon domain loss and overlying soft tissue deficit, simultaneous flexor hallucis longus tendon transfer with free tissue transfer (skin flap) has been described as a one-stage repair.
In percutaneous surgery, the surgeon makes several small incisions, rather than one large incision, and sews the tendon back together through the incision(s). Surgery may be delayed for about a week after the rupture to let the swelling go down. For sedentary patients and those who have vasculopathy or risks for poor healing, percutaneous surgical repair may be a better treatment choice than open surgical repair. Surgical care is evolving, with minimally invasive and percutaneous surgical techniques being developed to negate the risk of wound complications and infections found with open surgery. These techniques are more challenging than traditional open surgery, with a learning curve for surgeons, and are not yet widely used.
Rehabilitation
This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (January 2012) (Learn how and when to remove this message) |
Non-surgical treatment used to involve very long periods in a series of casts, and took longer to complete than surgical treatment. But both surgical and non-surgical rehabilitation protocols have recently become quicker, shorter, more aggressive, and more successful. It used to be that patients who underwent surgery would wear a cast for approximately 4 to 8 weeks after surgery and were only allowed to gently move the ankle once out of the cast. Recent studies have shown that patients have quicker and more successful recoveries when they are allowed to move and lightly stretch their ankle immediately after surgery. To keep their ankle safe these patients use a removable boot while walking and doing daily activities. Modern studies including non-surgical patients generally limit non-weight-bearing (NWB) to two weeks, and use modern removable boots, either fixed or hinged, rather than casts. Physiotherapy is often begun as early as two weeks following the start of either kind of treatment. This includes weightbearing and range of motion intervention strategies as well as strengthening and general conditioning.
There are three things that need to be kept in mind while rehabilitating a ruptured Achilles: range of motion, functional strength, and sometimes orthotic support. Range of motion is important because it takes into mind the tightness of the repaired tendon. When beginning rehab a patient should perform stretches lightly and increase the intensity as time and pain permits. Putting linear stress on the tendon is important because it stimulates connective tissue repair, which can be achieved while performing the “runners stretch,” (putting your toes a couple inches up the wall while your heel is on the ground). Doing stretches to gain functional strength are also important because it improves healing in the tendon, which will in turn lead to a quicker return to activities. These stretches should be more intense and should involve some sort of weight bearing, which helps reorient and strengthen the collagen fibers in the injured ankle. A popular stretch used for this phase of rehabilitation is the toe raise on an elevated surface. The patient is to push up onto the toes and lower his or her self as far down as possible and repeat several times. The other part of the rehab process is orthotic support. This doesn't have anything to do with stretching or strengthening the tendon, rather it is in place to keep the patient comfortable. These are custom made inserts that fit into the patients shoe and help with proper pronation of the foot, which is otherwise a problem that can lead to problems with the Achilles.
To briefly summarize the steps of rehabilitating a ruptured Achilles tendon, you should begin with range of motion type stretching. This will allow the ankle to get used to moving again and get ready for weight bearing activities. Then there is functional strength, this is where weight bearing should begin in order to start strengthening the tendon and getting it ready to perform daily activities and eventually in athletic situations.
Epidemiology
Of all the large tendon ruptures, 1 in 5 will be an Achilles tendon rupture. An Achilles tendon rupture is estimated to occur in a little over 1 per 10,000 people per year. Males are also over 2 times more likely to suffer from an Achilles tendon rupture as opposed to women. There are 2 age groups more likely to suffer from an Achilles tendon rupture. A younger age group between 25-40 and an older age group over 60. Sports and high-impact activity is the most common cause of rupture in younger people. Whereas sudden rupture from chronic tendon damage is more common in older people.
References
- ^ "Achilles Tendon Tears". MSD Manual Professional Edition. August 2017. Retrieved 26 June 2018.
- ^ Ochen Y, Beks RB, van Heijl M, Hietbrink F, Leenen LP, van der Velde D, et al. (January 2019). "Operative treatment versus nonoperative treatment of Achilles tendon ruptures: systematic review and meta-analysis". BMJ. 364: k5120. doi:10.1136/bmj.k5120. PMC 6322065. PMID 30617123.
- ^ Hubbard MJ, Hildebrand BA, Battafarano MM, Battafarano DF (June 2018). "Common Soft Tissue Musculoskeletal Pain Disorders". Primary Care. 45 (2): 289–303. doi:10.1016/j.pop.2018.02.006. PMID 29759125. S2CID 46886582.
- ^ Shamrock AG, Varacallo M (January 2018). "Achilles Tendon, Rupture". StatPearls. PMID 28613594.
- ^ Ferri FF (2015). Ferri's Clinical Advisor 2016 E-Book: 5 Books in 1. Elsevier Health Sciences. p. 19. ISBN 9780323378222.
- ^ El-Akkawi AI, Joanroy R, Barfod KW, Kallemose T, Kristensen SS, Viberg B (March 2018). "Effect of Early Versus Late Weightbearing in Conservatively Treated Acute Achilles Tendon Rupture: A Meta-Analysis". The Journal of Foot and Ankle Surgery. 57 (2): 346–352. doi:10.1053/j.jfas.2017.06.006. PMID 28974345. S2CID 3506883.
- van der Eng DM, Schepers T, Goslings JC, Schep NW (2012). "Rerupture rate after early weightbearing in operative versus conservative treatment of Achilles tendon ruptures: a meta-analysis". The Journal of Foot and Ankle Surgery. 52 (5): 622–628. doi:10.1053/j.jfas.2013.03.027. PMID 23659914.
- Maffulli N, Ajis A (June 2008). "Management of chronic ruptures of the Achilles tendon". The Journal of Bone and Joint Surgery. American Volume. 90 (6): 1348–1360. doi:10.2106/JBJS.G.01241. PMID 18519331.
- Shamrock AG, Varacallo M (January 2018). "Achilles Tendon, Rupture". StatPearls. PMID 28613594
- ^ Bidell MR, Lodise TP (June 2016). "Fluoroquinolone-Associated Tendinopathy: Does Levofloxacin Pose the Greatest Risk?". Pharmacotherapy. 36 (6): 679–693. doi:10.1002/phar.1761. PMID 27138564. S2CID 206359106.
- ^ Dams OC, Reininga IH, Gielen JL, van den Akker-Scheek I, Zwerver J (November 2017). "Imaging modalities in the diagnosis and monitoring of Achilles tendon ruptures: A systematic review". Injury. 48 (11): 2383–2399. doi:10.1016/j.injury.2017.09.013. PMID 28943056.
- ^ Doral MN, Alam M, Bozkurt M, Turhan E, Atay OA, Dönmez G, Maffulli N (May 2010). "Functional anatomy of the Achilles tendon". Knee Surgery, Sports Traumatology, Arthroscopy. 18 (5): 638–643. doi:10.1007/s00167-010-1083-7. PMID 20182867.
- Cuttica DJ, Hyer CF, Berlet GC (January 2015). "Intraoperative value of the thompson test". The Journal of Foot and Ankle Surgery. 54 (1): 99–101. doi:10.1053/j.jfas.2014.09.014. PMID 25441265.
- ^ Achilles Tendon Injuries~differential at eMedicine
- Aminlari A, Stone J, McKee R, Subramony R, Nadolski A, Tolia V, Hayden SR (November 2021). "Diagnosing Achilles Tendon Rupture with Ultrasound in Patients Treated Surgically: A Systematic Review and Meta-Analysis". The Journal of Emergency Medicine. 61 (5): 558–567. doi:10.1016/j.jemermed.2021.09.008. PMID 34801318.
- Grover VP, Tognarelli JM, Crossey MM, Cox IJ, Taylor-Robinson SD, McPhail MJ (September 2015). "Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians". Journal of Clinical and Experimental Hepatology. 5 (3): 246–255. doi:10.1016/j.jceh.2015.08.001. PMC 4632105. PMID 26628842.
- Ochen Y, Beks RB, van Heijl M, Hietbrink F, Leenen LP, van der Velde D, et al. (January 2019). "Operative treatment versus nonoperative treatment of Achilles tendon ruptures: systematic review and meta-analysis". BMJ. 364: k5120. doi:10.1136/bmj.k5120. PMC 6322065. PMID 30617123.
- Soroceanu A, Sidhwa F, Aarabi S, Kaufman A, Glazebrook M (December 2012). "Surgical versus nonsurgical treatment of acute Achilles tendon rupture: a meta-analysis of randomized trials". The Journal of Bone and Joint Surgery. American Volume. 94 (23): 2136–2143. doi:10.2106/JBJS.K.00917. PMC 3509775. PMID 23224384.
- "Achilles tendon rupture". Mayo Clinic. August 20, 2014.
- Nazerali RS, Hakimi M, Giza E, Sahar DE. Single-stage reconstruction of achilles tendon rupture with flexor hallucis longus tendon transfer and simultaneous free radial fasciocutaneous forearm flap. Ann Plast Surg. 2013 Apr;70(4):416-8. doi: 10.1097/SAP.0b013e3182853d6c. PMID 23486135.
- "Surgery for an Achilles Tendon Rupture". WebMD. January 3, 2013.
- Khan-Farooqi W, Anderson RB (April 28, 2010). "Achilles tendon evaluation and repair". Rheumatology Network.
- Meulenkamp B, Stacey D, Fergusson D, Hutton B, Mlis RS, Graham ID (December 2018). "Protocol for treatment of Achilles tendon ruptures; a systematic review with network meta-analysis". Systematic Reviews. 7 (1): 247. doi:10.1186/s13643-018-0912-5. PMC 6304227. PMID 30580763.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - Zellers JA, Christensen M, Kjær IL, Rathleff MS, Silbernagel KG (November 2019). "Defining Components of Early Functional Rehabilitation for Acute Achilles Tendon Rupture: A Systematic Review". Orthopaedic Journal of Sports Medicine. 7 (11): 2325967119884071. doi:10.1177/2325967119884071. PMC 6878623. PMID 31803789.
- Cluett J (April 29, 2007). "Achilles Tendon Rupture: What is an Achilles Tendon Rupture".
- Christensen KD (July 20, 2003). "Rehab of the Achilles Tendon". Archived from the original on November 29, 2009. Retrieved May 6, 2010.
- Park SH, Lee HS, Young KW, Seo SG. Treatment of Acute Achilles Tendon Rupture. Clin Orthop Surg. 2020;12(1):1-8. doi:10.4055/cios.2020.12.1.1
External links
Classification | D |
---|---|
External resources |
Soft tissue disorders | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Capsular joint |
| ||||||||||
Noncapsular joint |
| ||||||||||
Nonjoint |
|
Dislocations/subluxations, sprains and strains | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Joints and ligaments |
| ||||||||||||
Muscles and tendons |
|