This is the current revision of this page, as edited by ByVarying (talk | contribs) at 02:59, 20 June 2022 (→References: Categorization). The present address (URL) is a permanent link to this version.
Revision as of 02:59, 20 June 2022 by ByVarying (talk | contribs) (→References: Categorization)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)Names | |
---|---|
Preferred IUPAC name 1,4,7-Triazonane | |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
Beilstein Reference | 773877 |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.164.887 |
EC Number |
|
Gmelin Reference | 2614 |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | C6H15N3 |
Molar mass | 129.2046 g/mol |
Hazards | |
GHS labelling: | |
Pictograms | |
Signal word | Danger |
Hazard statements | H314 |
Precautionary statements | P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P405, P501 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). N verify (what is ?) Infobox references |
1,4,7-Triazacyclononane, known as "TACN" which is pronounced "tack-en," is an aza-crown ether with the formula (C2H4NH)3. TACN is derived, formally speaking, from cyclononane by replacing three equidistant CH2 groups with NH groups. TACN is one of the oligomers derived from aziridine, C2H4NH. Other members of the series include piperazine, C4H8(NH)2, and the cyclic tetramer 1,4,7,10-tetraazacyclododecane.
Synthesis
The ligand is prepared from diethylene triamine as follows by macrocyclization using ethyleneglycol ditosylate.
- H2NCH2CH2NHCH2CH2NH2 + 3 TsCl → Ts(H)NCH2CH2N(Ts)CH2CHH2N(H)Ts + 3 HCl
- Ts(H)NCH2CH2N(Ts)CH2CH2N(H)Ts + 2 NaOEt → Ts(Na)NCH2CH2N(Ts)CH2CH2N(Na)Ts
- Ts(Na)NCHH2CH2N(Ts)CH2CH2N(Na)Ts + TsOCH2CH2OTs + → 3 + 2 NaOTs
- 3 + 3 H2O → 3 + 3 HOTs
Coordination chemistry
TACN is a popular tridentate ligand. It is threefold symmetric and binds to one face of an octahedron of metalloids and transition metals. The (TACN)M unit is kinetically inert, allowing further synthetic transformations on the other coordination sites. A bulky analogue of TACN, is the N,N',N"-trimethylated analogue trimethyltriazacyclononane.
Illustrative complexes
- Although TACN characteristically coordinates to metals in mid- and high oxidation states, e.g. Ni(III), Mn(IV), Mo(III), W(III), exceptions occur. To illustrate, 1,4,7-triazacyclononane reacts readily with Mo(CO)6 and W(CO)6 to produce the respective air-stable tricarbonyl compounds, and . Both have an oxidation state of zero. After further reacting with 30% H2O2, the products are and . Both of these oxo complexes have an oxidation state of 6. The macrocyclic ligand does dissociate in the course of this dramatic change in formal oxidation state of the metal.
- The complex, , a catalyst for hydrolytic cleavage of phosphodiester bonds in DNA, is prepared as follows from TACN trihydrochloride:
- TACN·3HCl + CuCl2·3H2O + 3 NaOH → + 6 H2O + 3 NaCl
- Mn-TACN complexes catalyze epoxidation of alkenes such as styrene using H2O2 as an oxidant in a carbonate buffered methanol solution at a pH of 8.0. These reagents are considered environmentally benign,
- + H2O2 + NaHCO3 + (C6H5)C2H3→ + 2H2O + CO2 + (C6H5)C2H2O
- Chromium (II) sources, e.g. created by heating CrCl36H2O in DMSO react with TACN to form both 1:1 Cr:and 2:1 complexes, e.g. yellow .
References
- Chaudhuri, P.; Wieghardt, K. (1987). "The Chemistry of 1,4,7-Triazacyclononane and Related Tridentate Macrocyclic Compounds". In Lippard, Stephen J. (ed.). Progress in Inorganic Chemistry. Vol. 35. Hoboken, NJ, USA: John Wiley & Sons, Inc. pp. 329–436. doi:10.1002/9780470166369.ch4. ISBN 9780470166369.
- Wieghardt, Karl; Schmidt, Wilfried; Nuber, Bernhard; Weiss, Johannes (1979). "Darstellung und Struktur des trans-Diaqua-di-μ-hydroxo-bis-Kations; Kinetik und Mechanismus seiner Bildung". Chemische Berichte (in German). 112 (6): 2220–2230. doi:10.1002/cber.19791120629.
- Sibbons, Kevin F.; Shastri, Kirtida; Watkinson, Michael (2006). "The application of manganese complexes of ligands derived from 1,4,7-triazacyclononane in oxidative catalysis". Dalton Transactions (5): 645–661. doi:10.1039/B511331H. PMID 16429167.
- Deal, Kim A.; Burstyn, Judith N. (1996). "Mechanistic Studies of Dichloro(1,4,7-triazacyclononane)copper(II)-Catalyzed Phosphate Diester Hydrolysis". Inorg. Chem. 35 (10): 2792–2798. doi:10.1021/ic951488l.
- Wieghardt, Karl; Schmidt, Wilfried; Endres, Helmut; Wolfe, C. Robert (1979). "Neue μ-Hydroxo-Übergangsmetallkomplexe, II. Darstellung mehrkerniger Komplexe des Chroms(III) mit dreizähnigen Amin-Liganden. Struktur des μ-di-μ-hydroxobis-Kations". Chemische Berichte (in German). 112 (8): 2837–2846. doi:10.1002/cber.19791120810.
- Wieghardt, K.; Schmidt, W.; Hermann, W.; Küppers, H.-J. (1983). "Redox potentials of bis(1,4,7-triazacyclononane complexes of some first transition series metals(II,III). Preparation of bis(1,4,7-triazacyclononane)nickel(III) perchlorate". Inorg. Chem. 22 (20): 2953. doi:10.1021/ic00162a037.