Misplaced Pages

Multiverse

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Drbogdan (talk | contribs) at 15:32, 26 November 2022 (Reverted 1 edit by 2A02:8440:6405:5D8E:9C21:FAB0:2B84:DD4F (talk) to last revision by CAPTAIN JTK). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 15:32, 26 November 2022 by Drbogdan (talk | contribs) (Reverted 1 edit by 2A02:8440:6405:5D8E:9C21:FAB0:2B84:DD4F (talk) to last revision by CAPTAIN JTK)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) An accepted version of this page, accepted on 26 November 2022, was based on this revision.Hypothetical group of multiple universes For other uses, see Multiverse (disambiguation).

This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (April 2021)

Part of a series on
Physical cosmology
Full-sky image derived from nine years' WMAP data
Early universe
Backgrounds
Expansion · Future
Components · Structure
Components
Structure
Experiments
Scientists
Subject history
String theory
Fundamental objects
Perturbative theory
Non-perturbative results
Phenomenology
Mathematics
Related concepts
Theorists

The multiverse is a hypothetical group of multiple universes. Together, these universes comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The different universes within the multiverse are called "parallel universes", "other universes", "alternate universes", or "many worlds".

History of the concept

The idea of infinite worlds was first suggested by the pre-Socratic Greek philosopher Anaximander in the sixth century BCE. The evidence is not clear whether the worlds, as Anaximander viewed them, were co-existent or successive but he believed they were all perishable and in a cycle of creation and destruction.

Other early recorded examples of the idea of infinite worlds existed in the philosophy of Ancient Greek Atomism, which proposed that infinite parallel worlds arose from the collision of atoms. In the third century BCE, the philosopher Chrysippus suggested that the world eternally expired and regenerated, effectively suggesting the existence of multiple universes across time. The concept of multiple universes became more defined in the Middle Ages.

The American philosopher and psychologist William James used the term "multiverse" in 1895, but in a different context.

In Dublin in 1952, Erwin Schrödinger gave a lecture in which he jocularly warned his audience that what he was about to say might "seem lunatic". He said that when his equations seemed to describe several different histories, these were "not alternatives, but all really happen simultaneously". This sort of duality is called "superposition".

The term was first used in fiction in September 1961 in the DC comic book titled Flash of Two Worlds (Flash Volume 1 #123) by Carmine Infantino and Gardner Fox. In the story Flash meets with his duplicate version of another Earth (Earth-2), and another Flash (Flash-2).

The term was first used in fiction in its current physics context by Michael Moorcock in his 1963 SF Adventures novella The Sundered Worlds (part of his Eternal Champion series). (see Multiverse (Michael Moorcock))

Brief explanation

Multiple universes have been hypothesized in cosmology, physics, astronomy, religion, philosophy, transpersonal psychology, music, and all kinds of literature, particularly in science fiction, comic books and fantasy. In these contexts, parallel universes are also called "alternate universes", "quantum universes", "interpenetrating dimensions", "parallel universes", "parallel dimensions", "parallel worlds", "parallel realities", "quantum realities", "alternate realities", "alternate timelines", "alternate dimensions" and "dimensional planes".

The physics community has debated the various multiverse theories over time. Prominent physicists are divided about whether any other universes exist outside of our own.

Some physicists say the multiverse is not a legitimate topic of scientific inquiry. Concerns have been raised about whether attempts to exempt the multiverse from experimental verification could erode public confidence in science and ultimately damage the study of fundamental physics. Some have argued that the multiverse is a philosophical notion rather than a scientific hypothesis because it cannot be empirically falsified. The ability to disprove a theory by means of scientific experiment is a critical criterion of the accepted scientific method. Paul Steinhardt has famously argued that no experiment can rule out a theory if the theory provides for all possible outcomes.

In 2007, Nobel laureate Steven Weinberg suggested that if the multiverse existed, "the hope of finding a rational explanation for the precise values of quark masses and other constants of the standard model that we observe in our Big Bang is doomed, for their values would be an accident of the particular part of the multiverse in which we live."

Search for evidence

Around 2010, scientists such as Stephen M. Feeney analyzed Wilkinson Microwave Anisotropy Probe (WMAP) data and claimed to find evidence suggesting that this universe collided with other (parallel) universes in the distant past. However, a more thorough analysis of data from the WMAP and from the Planck satellite, which has a resolution three times higher than WMAP, did not reveal any statistically significant evidence of such a bubble universe collision. In addition, there was no evidence of any gravitational pull of other universes on ours.

Proponents and skeptics

Modern proponents of one or more of the multiverse hypotheses include Don Page, Brian Greene, Max Tegmark, Alan Guth, Andrei Linde, Michio Kaku, David Deutsch, Leonard Susskind, Alexander Vilenkin, Yasunori Nomura, Raj Pathria, Laura Mersini-Houghton, Neil deGrasse Tyson, Sean Carroll and Stephen Hawking.

Scientists who are generally skeptical of the multiverse hypothesis include David Gross, Paul Steinhardt, Anna Ijjas, Abraham Loeb, David Spergel, Neil Turok, Viatcheslav Mukhanov, Michael S. Turner, Roger Penrose, George Ellis, Joe Silk, Carlo Rovelli, Adam Frank, Marcelo Gleiser, Jim Baggott and Paul Davies.

Arguments against multiverse theories

In his 2003 New York Times opinion piece, "A Brief History of the Multiverse", author and cosmologist Paul Davies offered a variety of arguments that multiverse theories are non-scientific:

For a start, how is the existence of the other universes to be tested? To be sure, all cosmologists accept that there are some regions of the universe that lie beyond the reach of our telescopes, but somewhere on the slippery slope between that and the idea that there is an infinite number of universes, credibility reaches a limit. As one slips down that slope, more and more must be accepted on faith, and less and less is open to scientific verification. Extreme multiverse explanations are therefore reminiscent of theological discussions. Indeed, invoking an infinity of unseen universes to explain the unusual features of the one we do see is just as ad hoc as invoking an unseen Creator. The multiverse theory may be dressed up in scientific language, but in essence, it requires the same leap of faith.

— Paul Davies, The New York Times, "A Brief History of the Multiverse"

George Ellis, writing in August 2011, provided a criticism of the multiverse, and pointed out that it is not a traditional scientific theory. He accepts that the multiverse is thought to exist far beyond the cosmological horizon. He emphasized that it is theorized to be so far away that it is unlikely any evidence will ever be found. Ellis also explained that some theorists do not believe the lack of empirical testability and falsifiability is a major concern, but he is opposed to that line of thinking:

Many physicists who talk about the multiverse, especially advocates of the string landscape, do not care much about parallel universes per se. For them, objections to the multiverse as a concept are unimportant. Their theories live or die based on internal consistency and, one hopes, eventual laboratory testing.

Ellis says that scientists have proposed the idea of the multiverse as a way of explaining the nature of existence. He points out that it ultimately leaves those questions unresolved because it is a metaphysical issue that cannot be resolved by empirical science. He argues that observational testing is at the core of science and should not be abandoned:

As skeptical as I am, I think the contemplation of the multiverse is an excellent opportunity to reflect on the nature of science and on the ultimate nature of existence: why we are here.... In looking at this concept, we need an open mind, though not too open. It is a delicate path to tread. Parallel universes may or may not exist; the case is unproved. We are going to have to live with that uncertainty. Nothing is wrong with scientifically based philosophical speculation, which is what multiverse proposals are. But we should name it for what it is.

— George Ellis, "Does the Multiverse Really Exist?", Scientific American

Philosopher Philip Goff argues that the inference of a multiverse to explain the apparent fine-tuning of the universe is an example of Inverse Gambler's Fallacy.

Types

Max Tegmark and Brian Greene have devised classification schemes for the various theoretical types of multiverses and universes that they might comprise.

Max Tegmark's four levels

Cosmologist Max Tegmark has provided a taxonomy of universes beyond the familiar observable universe. The four levels of Tegmark's classification are arranged such that subsequent levels can be understood to encompass and expand upon previous levels. They are briefly described below.

Level I: An extension of our universe

A prediction of cosmic inflation is the existence of an infinite ergodic universe, which, being infinite, must contain Hubble volumes realizing all initial conditions.

Accordingly, an infinite universe will contain an infinite number of Hubble volumes, all having the same physical laws and physical constants. In regard to configurations such as the distribution of matter, almost all will differ from our Hubble volume. However, because there are infinitely many, far beyond the cosmological horizon, there will eventually be Hubble volumes with similar, and even identical, configurations. Tegmark estimates that an identical volume to ours should be about 10 meters away from us.

Given infinite space, there would, in fact, be an infinite number of Hubble volumes identical to ours in the universe. This follows directly from the cosmological principle, wherein it is assumed that our Hubble volume is not special or unique.

Level II: Universes with different physical constants

In the eternal inflation theory, which is a variant of the cosmic inflation theory, the multiverse or space as a whole is stretching and will continue doing so forever, but some regions of space stop stretching and form distinct bubbles (like gas pockets in a loaf of rising bread). Such bubbles are embryonic level I multiverses.

Different bubbles may experience different spontaneous symmetry breaking, which results in different properties, such as different physical constants.

Level II also includes John Archibald Wheeler's oscillatory universe theory and Lee Smolin's fecund universes theory.

Level III: Many-worlds interpretation of quantum mechanics

Hugh Everett III's many-worlds interpretation (MWI) is one of several mainstream interpretations of quantum mechanics.

In brief, one aspect of quantum mechanics is that certain observations cannot be predicted absolutely. Instead, there is a range of possible observations, each with a different probability. According to the MWI, each of these possible observations corresponds to a different universe, with some or many of the interpretation's proponents suggesting that these universes are as real as ours. Suppose a six-sided die is thrown and that the result of the throw corresponds to quantum mechanics observable. All six possible ways the dice can fall correspond to six different universes. In the case of the Schrödinger's cat thought experiment, both outcomes would be "real" in at least one "world".

Tegmark argues that a Level III multiverse does not contain more possibilities in the Hubble volume than a Level I or Level II multiverse. In effect, all the different "worlds" created by "splits" in a Level III multiverse with the same physical constants can be found in some Hubble volume in a Level I multiverse. Tegmark writes that, "The only difference between Level I and Level III is where your doppelgängers reside. In Level I they live elsewhere in good old three-dimensional space. In Level III they live on another quantum branch in infinite-dimensional Hilbert space."

Similarly, all Level II bubble universes with different physical constants can, in effect, be found as "worlds" created by "splits" at the moment of spontaneous symmetry breaking in a Level III multiverse. According to Yasunori Nomura, Raphael Bousso, and Leonard Susskind, this is because global spacetime appearing in the (eternally) inflating multiverse is a redundant concept. This implies that the multiverses of Levels I, II, and III are, in fact, the same thing. This hypothesis is referred to as "Multiverse = Quantum Many Worlds". According to Yasunori Nomura, this quantum multiverse is static, and time is a simple illusion.

Another version of the many-worlds idea is H. Dieter Zeh's many-minds interpretation.

Level IV: Ultimate ensemble

The ultimate mathematical universe hypothesis is Tegmark's own hypothesis.

This level considers all universes to be equally real which can be described by different mathematical structures.

Tegmark writes:

Abstract mathematics is so general that any Theory Of Everything (TOE) which is definable in purely formal terms (independent of vague human terminology) is also a mathematical structure. For instance, a TOE involving a set of different types of entities (denoted by words, say) and relations between them (denoted by additional words) is nothing but what mathematicians call a set-theoretical model, and one can generally find a formal system that it is a model of.

He argues that this "implies that any conceivable parallel universe theory can be described at Level IV" and "subsumes all other ensembles, therefore brings closure to the hierarchy of multiverses, and there cannot be, say, a Level V."

Jürgen Schmidhuber, however, says that the set of mathematical structures is not even well-defined and that it admits only universe representations describable by constructive mathematics—that is, computer programs.

Schmidhuber explicitly includes universe representations describable by non-halting programs whose output bits converge after a finite time, although the convergence time itself may not be predictable by a halting program, due to the undecidability of the halting problem. He also explicitly discusses the more restricted ensemble of quickly computable universes.

Brian Greene's nine types

The American theoretical physicist and string theorist Brian Greene discussed nine types of multiverses:

Quilted
The quilted multiverse works only in an infinite universe. With an infinite amount of space, every possible event will occur an infinite number of times. However, the speed of light prevents us from being aware of these other identical areas.
Inflationary
The inflationary multiverse is composed of various pockets in which inflation fields collapse and form new universes.
Brane
The brane multiverse version postulates that our entire universe exists on a membrane (brane) which floats in a higher dimension or "bulk". In this bulk, there are other membranes with their own universes. These universes can interact with one another, and when they collide, the violence and energy produced is more than enough to give rise to a big bang. The branes float or drift near each other in the bulk, and every few trillion years, attracted by gravity or some other force we do not understand, collide and bang into each other. This repeated contact gives rise to multiple or "cyclic" big bangs. This particular hypothesis falls under the string theory umbrella as it requires extra spatial dimensions.
Cyclic
The cyclic multiverse has multiple branes that have collided, causing Big Bangs. The universes bounce back and pass through time until they are pulled back together and again collide, destroying the old contents and creating them anew.
Landscape
The landscape multiverse relies on string theory's Calabi–Yau spaces. Quantum fluctuations drop the shapes to a lower energy level, creating a pocket with a set of laws different from that of the surrounding space.
Quantum
The quantum multiverse creates a new universe when a diversion in events occurs, as in the real-worlds variant of the many-worlds interpretation of quantum mechanics.
Holographic
The holographic multiverse is derived from the theory that the surface area of a space can encode the contents of the volume of the region.
Simulated
The simulated multiverse exists on complex computer systems that simulate entire universes. A related hypothesis, as put forward as a possibility by astronomer Avi Loeb, is that universes may be creatable in laboratories of advanced technological civilizations who have a theory of everything. Other related hypotheses include brain in a vat-type scenarios where the perceived universe is either simulated in a low-resource way or not perceived directly by the virtual/simulated inhabitant species.
Ultimate
The ultimate multiverse contains every mathematically possible universe under different laws of physics.

Twin-world models

Concept of a twin universe, with the beginning (of time) in the middle.

There are models of two related universes that e.g. attempt to explain the baryon asymmetry – why there was more matter than antimatter at the beginning – with a mirror anti-universe. One two-universe cosmological model could explain the Hubble constant (H0) tension via interactions between the two worlds. The "mirror world" would contain copies of all existing fundamental particles. Another twin/pair-world or "bi-world" cosmology is shown to theoretically be able to solve the cosmological constant (Λ) problem, closely related to dark energy: two interacting worlds with a large Λ each could result in a small shared effective Λ.

Cyclic theories

Main article: Cyclic model

In several theories, there is a series of, in some cases infinite, self-sustaining cycles – typically a series of Big Crunches (or Big Bounces). However, the respective universes do not exist at once but are sequential, with key natural constituents potentially varying between universes (see § Anthropic principle).

M-theory

See also: Introduction to M-theory, M-theory, Brane cosmology, and String theory landscape

A multiverse of a somewhat different kind has been envisaged within string theory and its higher-dimensional extension, M-theory.

These theories require the presence of 10 or 11 spacetime dimensions respectively. The extra six or seven dimensions may either be compactified on a very small scale, or our universe may simply be localized on a dynamical (3+1)-dimensional object, a D3-brane. This opens up the possibility that there are other branes which could support other universes.

Black-hole cosmology

Main article: Black-hole cosmology

Black-hole cosmology is a cosmological model in which the observable universe is the interior of a black hole existing as one of possibly many universes inside a larger universe. This includes the theory of white holes, which are on the opposite side of space-time.

Anthropic principle

Main article: Anthropic principle

The concept of other universes has been proposed to explain how our own universe appears to be fine-tuned for conscious life as we experience it.

If there were a large (possibly infinite) number of universes, each with possibly different physical laws (or different fundamental physical constants), then some of these universes (even if very few) would have the combination of laws and fundamental parameters that are suitable for the development of matter, astronomical structures, elemental diversity, stars, and planets that can exist long enough for life to emerge and evolve.

The weak anthropic principle could then be applied to conclude that we (as conscious beings) would only exist in one of those few universes that happened to be finely tuned, permitting the existence of life with developed consciousness. Thus, while the probability might be extremely small that any particular universe would have the requisite conditions for life (as we understand life), those conditions do not require intelligent design as an explanation for the conditions in the Universe that promote our existence in it.

An early form of this reasoning is evident in Arthur Schopenhauer's 1844 work "Von der Nichtigkeit und dem Leiden des Lebens", where he argues that our world must be the worst of all possible worlds, because if it were significantly worse in any respect it could not continue to exist.

Occam's razor

Proponents and critics disagree about how to apply Occam's razor. Critics argue that to postulate an almost infinite number of unobservable universes, just to explain our own universe, is contrary to Occam's razor. However, proponents argue that in terms of Kolmogorov complexity the proposed multiverse is simpler than a single idiosyncratic universe.

For example, multiverse proponent Max Tegmark argues:

n entire ensemble is often much simpler than one of its members. This principle can be stated more formally using the notion of algorithmic information content. The algorithmic information content in a number is, roughly speaking, the length of the shortest computer program that will produce that number as output. For example, consider the set of all integers. Which is simpler, the whole set or just one number? Naively, you might think that a single number is simpler, but the entire set can be generated by quite a trivial computer program, whereas a single number can be hugely long. Therefore, the whole set is actually simpler... (Similarly), the higher-level multiverses are simpler. Going from our universe to the Level I multiverse eliminates the need to specify initial conditions, upgrading to Level II eliminates the need to specify physical constants, and the Level IV multiverse eliminates the need to specify anything at all... A common feature of all four multiverse levels is that the simplest and arguably most elegant theory involves parallel universes by default. To deny the existence of those universes, one needs to complicate the theory by adding experimentally unsupported processes and ad hoc postulates: finite space, wave function collapse and ontological asymmetry. Our judgment therefore comes down to which we find more wasteful and inelegant: many worlds or many words. Perhaps we will gradually get used to the weird ways of our cosmos and find its strangeness to be part of its charm.

— Max Tegmark

Possible worlds and real worlds

In any given set of possible universes – e.g. in terms of histories or variables of nature – not all may be ever realized, and some may be realized many times. For example, over infinite time there could, in some potential theories, be infinite universes, but only a small or relatively small real number of universes where humanity could exist and only one where it ever does exist (with a unique history). It has been suggested that a universe that "contains life, in the form it has on Earth, is in a certain sense radically non-ergodic, in that the vast majority of possible organisms will never be realized". On the other hand, some scientists, theories and popular works conceive of a multiverse in which the universes are so similar that humanity exists in many equally real separate universes but with varying histories.

There is a debate about whether the other worlds are real in the many-worlds interpretation (MWI) of quantum mechanics. In Quantum Darwinism one does not need to adopt a MWI in which all of the branches are equally real.

Modal realism

Possible worlds are a way of explaining probability and hypothetical statements. Some philosophers, such as David Lewis, believe that all possible worlds exist and that they are just as real as the world we live in (a position known as modal realism).

See also

References

Footnotes

  1. In some models, such as those of brane cosmology, many parallel structures may exist within the same universe.

Citations

  1. Tarán, Leonardo (1987), "THE TEXT OF SIMPLICIUS' COMMENTARY ON ARISTOTLE'S PHYSICS", Simplicius. Sa vie, son oeuvre, sa survie, Berlin, Boston: DE GRUYTER, doi:10.1515/9783110862041.246, ISBN 9783110862041, retrieved 21 September 2022
  2. Kočandrle, Radim (December 2019). "Infinite Worlds in the Thought of Anaximander". The Classical Quarterly. 69 (2): 483–500. doi:10.1017/S000983882000004X. ISSN 0009-8388. S2CID 216169543.
  3. Sedacca, Matthew (2017). The Multiverse Is an Ancient Idea. Nautilus. Retrieved 2020-05-26.
  4. James, William, The Will to Believe, 1895; and earlier in 1895, as cited in OED's new 2003 entry for "multiverse": James, William (October 1895), "Is Life Worth Living?", Int. J. Ethics, 6 (1): 10, doi:10.1086/205378, Visible nature is all plasticity and indifference, a multiverse, as one might call it, and not a universe.
  5. "Erwin Schrödinger and the Quantum Revolution by John Gribbin: review".
  6. Kragh, H. (2009). "Contemporary History of Cosmology and the Controversy over the Multiverse". Annals of Science. 66 (4): 529–551. doi:10.1080/00033790903047725. S2CID 144773289.
  7. Ellis, Georg; Silk, Joe (16 December 2014). "Scientific Method: Defend the Integrity of Physics". Nature. 516 (7531): 321–323. Bibcode:2014Natur.516..321E. doi:10.1038/516321a. PMID 25519115.
  8. "Feynman on Scientific Method". YouTube. Retrieved 28 July 2012.
  9. Steinhardt, Paul (3 June 2014). "Big Bang blunder bursts the Multiverse bubble". Nature. 510 (7503): 9. Bibcode:2014Natur.510....9S. doi:10.1038/510009a. PMID 24899270.
  10. Weinberg, Steven (20 November 2007). "Physics: What we do and don't know". The New York Review of Books.
  11. "Astronomers Find First Evidence Of Other Universe". technologyreview.com. 13 December 2010. Retrieved 12 October 2013.
  12. Max Tegmark; Alexander Vilenkin (19 July 2011). "The Case for Parallel Universes". Scientific American. Retrieved 12 October 2013.
  13. "Is Our Universe Inside a Bubble? First Observational Test of the 'Multiverse'". Science Daily. sciencedaily.com. 3 August 2011. Retrieved 12 October 2013.
  14. Feeney, Stephen M.; et al. (2011). "First observational tests of eternal inflation: Analysis methods and WMAP 7-year results". Physical Review D. 84 (4): 43507. arXiv:1012.3667. Bibcode:2011PhRvD..84d3507F. doi:10.1103/PhysRevD.84.043507. S2CID 43793857.
  15. Feeney; et al. (2011). "First observational tests of eternal inflation". Physical Review Letters. 107 (7): 071301. arXiv:1012.1995. Bibcode:2011PhRvL.107g1301F. doi:10.1103/PhysRevLett.107.071301. PMID 21902380. S2CID 23560957.. Bousso, Raphael; Harlow, Daniel; Senatore, Leonardo (2015). "Inflation after False Vacuum Decay: Observational Prospects after Planck". Physical Review D. 91 (8): 083527. arXiv:1309.4060. Bibcode:2015PhRvD..91h3527B. doi:10.1103/PhysRevD.91.083527. S2CID 118488797.
  16. Collaboration, Planck; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Levy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Cabella, P.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; et al. (20 March 2013). "Planck intermediate results. XIII. Constraints on peculiar velocities". Astronomy & Astrophysics. 561: A97. arXiv:1303.5090. Bibcode:2014A&A...561A..97P. doi:10.1051/0004-6361/201321299. S2CID 2745526.
  17. "Blow for 'dark flow' in Planck's new view of the cosmos". New Scientist. 3 April 2013. Retrieved 10 March 2014.
  18. "Does God exist in the multiverse?". 8 March 2018.
  19. Greene, Brian (24 January 2011). "A Physicist Explains Why Parallel Universes May Exist". npr.org (Interview). Interviewed by Terry Gross. Archived from the original on 13 September 2014. Retrieved 12 September 2014.
  20. Greene, Brian (24 January 2011). "Transcript:A Physicist Explains Why Parallel Universes May Exist". npr.org (Interview). Interviewed by Terry Gross. Archived from the original on 13 September 2014. Retrieved 12 September 2014.
  21. ^ Tegmark, Max (2003). "Parallel Universes". Scientific American. 288 (5): 40–51. arXiv:astro-ph/0302131. Bibcode:2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40. PMID 12701329.
  22. "Alan Guth: Inflationary Cosmology: Is Our Universe Part of a Multiverse?". YouTube. Archived from the original on 11 December 2021. Retrieved 6 October 2014.
  23. Linde, Andrei (27 January 2012). "Inflation in Supergravity and String Theory: Brief History of the Multiverse" (PDF). ctc.cam.ac.uk. Archived (PDF) from the original on 14 July 2014. Retrieved 13 September 2014.
  24. "e-reading.ws" (PDF). www.e-reading.ws.
  25. David Deutsch (1997). "The Ends of the Universe". The Fabric of Reality: The Science of Parallel Universes—and Its Implications. London: Penguin Press. ISBN 0-7139-9061-9.
  26. ^ Bousso, R.; Susskind, L. (2012). "Multiverse interpretation of quantum mechanics". Physical Review D. 85 (4): 045007. arXiv:1105.3796. Bibcode:2012PhRvD..85d5007B. doi:10.1103/PhysRevD.85.045007. S2CID 118507872.
  27. Vilenkin, Alex (2007). Many Worlds in One: The Search for Other Universes. ISBN 9780374707149.
  28. ^ Nomura, Y. (2011). "Physical theories, eternal inflation, and the quantum universe". Journal of High Energy Physics. 2011 (11): 63. arXiv:1104.2324. Bibcode:2011JHEP...11..063N. doi:10.1007/JHEP11(2011)063. S2CID 119283262.
  29. Pathria, R. K. (1972). "The Universe as a Black Hole". Nature. 240 (5379): 298–299. Bibcode:1972Natur.240..298P. doi:10.1038/240298a0. S2CID 4282253.
  30. Fox, Killian (27 August 2022). "Cosmologist Laura Mersini-Houghton: 'Our universe is one tiny grain of dust in a beautiful cosmos' - Interview". The Guardian. Retrieved 28 August 2022.
  31. "How to Find a Multiverse". iai.tv. Retrieved 22 October 2019.
  32. Catchpole, Heather (24 November 2009). "Weird data suggests something big beyond the edge of the universe". Cosmos. Archived from the original on 14 July 2014. Retrieved 27 July 2014.
  33. Moon, Timur (19 May 2013). "Planck Space Data Yields Evidence of Universes Beyond Our Own". International Business Times. Retrieved 27 July 2014.
  34. Freeman, David (4 March 2014). "Why Revive 'Cosmos?' Neil DeGrasse Tyson Says Just About Everything We Know Has Changed". huffingtonpost.com. Archived from the original on 13 September 2014. Retrieved 12 September 2014.
  35. Sean Carroll (18 October 2011). "Welcome to the Multiverse". Discover. Retrieved 5 May 2015.
  36. Carr, Bernard (21 June 2007). Universe or Multiverse. p. 19. ISBN 9780521848411. Some physicists would prefer to believe that string theory, or M-theory, will answer these questions and uniquely predict the features of the Universe. Others adopt the view that the initial state of the Universe is prescribed by an outside agency, code-named God, or that there are many universes, with ours being picked out by the anthropic principle. Hawking argued that string theory is unlikely to predict the distinctive features of the Universe. But neither is he is an advocate of God. He therefore opts for the last approach, favoring the type of multiverse which arises naturally within the context of his own work in quantum cosmology.
  37. Davies, Paul (2008). "Many Scientists Hate the Multiverse Idea". The Goldilocks Enigma: Why Is the Universe Just Right for Life?. Houghton Mifflin Harcourt. p. 207. ISBN 9780547348469.
  38. Steinhardt, Paul (9 March 2014). "Theories of Anything". edge.org. 2014 : WHAT SCIENTIFIC IDEA IS READY FOR RETIREMENT?. Archived from the original on 10 March 2014. Retrieved 9 March 2014.
  39. ^ Ijjas, Anna; Loeb, Abraham; Steinhardt, Paul (February 2017), "Cosmic Inflation Theory Faces Challenges", Scientific American, 316 (2): 32–39, doi:10.1038/scientificamerican0217-32, PMID 28118351
  40. "Is Nature Simple? 2018 Breakthrough Prize Symposium Panel". YouTube. Retrieved 14 January 2018.
  41. Gibbons, G.W.; Turok, Neil (2008). "The Measure Problem in Cosmology". Phys. Rev. D. 77 (6): 063516. arXiv:hep-th/0609095. Bibcode:2008PhRvD..77f3516G. doi:10.1103/PhysRevD.77.063516. S2CID 16394385.
  42. Mukhanov, Viatcheslav (2014). "Inflation without Selfreproduction". Fortschritte der Physik. 63 (1): 36–41. arXiv:1409.2335. Bibcode:2015ForPh..63...36M. doi:10.1002/prop.201400074. S2CID 117514254.
  43. Woit, Peter (9 June 2015). "A Crisis at the (Western) Edge of Physics". Not Even Wrong.
  44. Woit, Peter (14 June 2015). "CMB @ 50". Not Even Wrong.
  45. Ellis, George F. R. (1 August 2011). "Does the Multiverse Really Exist?". Scientific American. 305 (2): 38–43. Bibcode:2011SciAm.305a..38E. doi:10.1038/scientificamerican0811-38. PMID 21827123. Retrieved 12 September 2014.
  46. Ellis, George (2012). "The Multiverse: Conjecture, Proof, and Science" (PDF). Slides for a talk at Nicolai Fest Golm 2012. Archived from the original (PDF) on 13 September 2014. Retrieved 12 September 2014.
  47. Ellis, George; Silk, Joe (16 December 2014), "Scientific Method: Defend the Integrity of Physics", Nature, 516 (7531): 321–323, Bibcode:2014Natur.516..321E, doi:10.1038/516321a, PMID 25519115
  48. Scoles; Sarah (19 April 2016), "Can Physics Ever Prove the Multiverse is Real", Smithsonian.com
  49. ^ Frank, Adam; Gleiser, Marcelo (5 June 2015). "A Crisis at the Edge of Physics". The New York Times.
  50. Baggott, Jim (1 August 2013). Farewell to Reality: How Modern Physics Has Betrayed the Search for Scientific Truth. Pegasus. ISBN 978-1-60598-472-8.
  51. Davies, Paul (12 April 2003). "A Brief History of the Multiverse". The New York Times.
  52. Davies, Paul (12 April 2003). "A Brief History of the Multiverse". New York Times. Retrieved 16 August 2011.
  53. Ellis, George F. R. (1 August 2011). "Does the Multiverse Really Exist?". Scientific American. Vol. 305, no. 2. pp. 38–43. Bibcode:2011SciAm.305a..38E. doi:10.1038/scientificamerican0811-38. Retrieved 16 August 2011.
  54. Goff, Philip. "Our Improbable Existence Is No Evidence for a Multiverse". Scientific American.
  55. Tegmark, Max (May 2003). "Parallel Universes". Scientific American. 288 (5): 40–51. arXiv:astro-ph/0302131. Bibcode:2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40. PMID 12701329.
  56. Tegmark, Max (23 January 2003). Parallel Universes (PDF). Retrieved 7 February 2006.
  57. ^ "Parallel universes. Not just a staple of science fiction, other universes are a direct implication of cosmological observations.", Tegmark M., Sci Am. 2003 May;288(5):40–51.
  58. "First Second of the Big Bang". How The Universe Works 3. 2014. Discovery Science.
  59. Nomura, Yasunori; Johnson, Matthew C.; Mortlock, Daniel J.; Peiris, Hiranya V. (2012). "Static quantum multiverse". Physical Review D. 86 (8): 083505. arXiv:1205.5550. Bibcode:2012PhRvD..86h3505N. doi:10.1103/PhysRevD.86.083505. S2CID 119207079.
  60. Tegmark, Max (2014). Our Mathematical Universe: My Quest for the Ultimate Nature of Reality. Knopf Doubleday Publishing Group. ISBN 9780307599803.
  61. J. Schmidhuber (1997): A Computer Scientist's View of Life, the Universe, and Everything. Lecture Notes in Computer Science, pp. 201–208, Springer: IDSIA – Dalle Molle Institute for Artificial Intelligence
  62. Schmidhuber, Juergen (2000). "Algorithmic Theories of Everything". arXiv:quant-ph/0011122.
  63. J. Schmidhuber (2002): Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit. International Journal of Foundations of Computer Science 13(4):587–612 IDSIA – Dalle Molle Institute for Artificial Intelligence
  64. J. Schmidhuber (2002): The Speed Prior: A New Simplicity Measure Yielding Near-Optimal Computable Predictions. Proc. 15th Annual Conference on Computational Learning Theory (COLT 2002), Sydney, Australia, Lecture Notes in Artificial Intelligence, pp. 216–228. Springer: IDSIA – Dalle Molle Institute for Artificial Intelligence
  65. In The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos, 2011
  66. Loeb, Avi. "Was Our Universe Created in a Laboratory?". Scientific American. Retrieved 12 July 2022.
  67. "What if we're living in a computer simulation?". The Guardian. 22 April 2017. Retrieved 12 July 2022.
  68. "Our universe has antimatter partner on the other side of the Big Bang, say physicists". Physics World. 3 January 2019. Retrieved 22 June 2022.
  69. Letzter, Rafi (23 June 2020). "Why some physicists really think there's a 'mirror universe' hiding in space-time". Space.com. Retrieved 22 June 2022.
  70. Boyle, Latham; Finn, Kieran; Turok, Neil (20 December 2018). "CPT-Symmetric Universe". Physical Review Letters. 121 (25): 251301. arXiv:1803.08928. Bibcode:2018PhRvL.121y1301B. doi:10.1103/PhysRevLett.121.251301. PMID 30608856. S2CID 58638592.
  71. "Mirror world of dark particles could explain cosmic anomaly". Physics World. 31 May 2022. Retrieved 22 June 2022.
  72. Cyr-Racine, Francis-Yan; Ge, Fei; Knox, Lloyd (18 May 2022). "Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant". Physical Review Letters. 128 (20): 201301. arXiv:2107.13000. Bibcode:2022PhRvL.128t1301C. doi:10.1103/PhysRevLett.128.201301. PMID 35657861. S2CID 248904936.
  73. Bedford, Bailey. "Bilayer graphene inspires two-universe cosmological model". Joint Quantum Institute. Retrieved 22 June 2022.
  74. Parhizkar, Alireza; Galitski, Victor (2 May 2022). "Strained bilayer graphene, emergent energy scales, and moir\'e gravity". Physical Review Research. 4 (2): L022027. arXiv:2108.04252. Bibcode:2022PhRvR...4b2027P. doi:10.1103/PhysRevResearch.4.L022027. S2CID 236965490.
  75. Parhizkar, Alireza; Galitski, Victor (2022). "Moiré Gravity and Cosmology". arXiv:2204.06574 .
  76. Weinberg, Steven (2005). "Living in the Multiverse". arXiv:hep-th/0511037v1.
  77. Richard J Szabo, An introduction to string theory and D-brane dynamics (2004)
  78. Maurizio Gasperini, Elements of String Cosmology (2007)
  79. Pathria, R. K. (1 December 1972). "The Universe as a Black Hole". Nature. 240 (5379): 298–299. Bibcode:1972Natur.240..298P. doi:10.1038/240298a0. ISSN 0028-0836. S2CID 4282253.
  80. Arthur Schopenhauer, "Die Welt als Wille und Vorstellung," supplement to the 4th book "Von der Nichtigkeit und dem Leiden des Lebens". see also R.B. Haldane and J. Kemp's translation "On the Vanity and Suffering of Life" pp 395-6
  81. Trinh, Xuan Thuan (2006). Staune, Jean (ed.). Science & the Search for Meaning: Perspectives from International Scientists. West Conshohocken, PA: Templeton Foundation. p. 186. ISBN 978-1-59947-102-0.
  82. Tegmark, M. (May 2003). "Parallel universes. Not just a staple of science fiction, other universes are a direct implication of cosmological observations". Scientific American. 288 (5): 40–51. arXiv:astro-ph/0302131. Bibcode:2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40. PMID 12701329.
  83. Ellis, G. F. R.; Kirchner, U.; Stoeger, W. R. (21 January 2004). "Multiverses and physical cosmology". Monthly Notices of the Royal Astronomical Society. 347 (3): 921–936. arXiv:astro-ph/0305292. Bibcode:2004MNRAS.347..921E. doi:10.1111/j.1365-2966.2004.07261.x. S2CID 119028830.
  84. Cortês, Marina; Kauffman, Stuart A.; Liddle, Andrew R.; Smolin, Lee (28 April 2022). "Biocosmology: Biology from a cosmological perspective". arXiv:2204.09379 .
  85. "What is the multiverse—and is there any evidence it really exists?". Science. 4 May 2022. Retrieved 12 July 2022.
  86. Zurek, Wojciech Hubert (13 July 2018). "Quantum theory of the classical: quantum jumps, Born's Rule and objective classical reality via quantum Darwinism". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 376 (2123): 20180107. arXiv:1807.02092. Bibcode:2018RSPTA.37680107Z. doi:10.1098/rsta.2018.0107. PMC 5990654. PMID 29807905.
  87. Lewis, David (1986). On the Plurality of Worlds. Basil Blackwell. ISBN 978-0-631-22426-6.

Further reading

External links

Time travel
General terms and concepts
Time travel in fiction
Temporal paradoxes
Parallel timelines
Philosophy of space and time
Spacetimes in general relativity that
can contain closed timelike curves
Quantum gravity
Central concepts
Toy models
Quantum field theory
in curved spacetime
Black holes
Approaches
String theory
Canonical quantum gravity
Euclidean quantum gravity
Others
Applications
See also: Template:Quantum mechanics topics
Science fiction
Outline
Subgenres
Cyberpunk derivatives
Culture
Region
Awards
Cinematic
Literary, art,
and audio
Multimedia
Media
Film
Literature
Stage
Television
Themes
Architectural
Biological
Physical
Psychological
Social
Technological
Religious
Related
Portals: Categories:
Multiverse Add topic