Misplaced Pages

X-linked dominant inheritance

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by 2600:4040:acee:9400:44de:21be:4fba:8db7 (talk) at 12:43, 9 April 2023 (List of dominant X-linked diseases: Added content). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 12:43, 9 April 2023 by 2600:4040:acee:9400:44de:21be:4fba:8db7 (talk) (List of dominant X-linked diseases: Added content)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) Mode of inheritance
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "X-linked dominant inheritance" – news · newspapers · books · scholar · JSTOR (September 2009) (Learn how and when to remove this message)
X-linked dominant inheritance

X-linked dominant inheritance, sometimes referred to as X-linked dominance, is a mode of genetic inheritance by which a dominant gene is carried on the X chromosome. As an inheritance pattern, it is less common than the X-linked recessive type. In medicine, X-linked dominant inheritance indicates that a gene responsible for a genetic disorder is located on the X chromosome, and only one copy of the allele is sufficient to cause the disorder when inherited from a parent who has the disorder. In this case, someone who expresses an X-linked dominant allele will exhibit the disorder and be considered affected.

X-linked dominant traits do not necessarily affect males more than females (unlike X-linked recessive traits). The exact pattern of inheritance varies, depending on whether the father or the mother has the trait of interest. All fathers that are affected by an X-linked dominant disorder will have affected daughters but not affected sons. However, if the mother is also affected then sons will have a chance of being affected, depending on whether a dominant or recessive X chromosome is passed on. When the son is affected, the mother will always be affected. Some X-linked dominant conditions are embryonic lethal in males, making them appear to only occur in females.

Genetics

As the X chromosome is one of the sex chromosomes (the other being the Y chromosome), X-linked inheritance is determined by the sex of the parent carrying a specific gene and can often seem complex. This is due to the fact that, typically, females have two copies of the X-chromosome, while males have only one copy. The difference between dominant and recessive inheritance patterns also plays a role in determining the chances of a child inheriting an X-linked disorder from their parentage.

Males can only get an X chromosome from their mother whilst females get an X chromosome from both parents. As a result, females tend to show higher prevalence of X-linked dominant disorders because they have more of a chance to inherit a faulty X chromosome.

Inheritance

In X-linked dominant inheritance, when the mother alone is the carrier of a mutated, or defective gene associated with a disease or disorder; she herself will have the disorder. Her children will inherit the disorder as follows:

  • Of her daughters and sons: 50% will have the disorder, 50% will be completely unaffected. Children of either sex have an even chance of receiving either of their mother's two X chromosomes, one of which contains the defective gene in question.

When the father alone is the carrier of a defective gene associated with a disease or disorder, he too will have the disorder. His children will inherit the disorder as follows:

  • Of his daughters: 100% will have the disorder, since all of his daughters will receive one copy of his single X chromosome.
  • Of his sons: none will have the disorder; sons do not receive an X chromosome from their father.

If both parents were carriers of a defective gene associated with a disease or disorder, they would both have the disorder. Their children would inherit the disorder as follows:

  • Of their daughters: 100% will have the disorder, since all of the daughters will receive a copy of their father's X chromosome.
  • Of the sons: 50% will have the disorder, 50% will be completely unaffected. Sons have an equal chance of receiving either of their mother's X chromosomes.

In such a case, where both parents carry and thus are affected by an X-linked dominant disorder, the chance of a daughter receiving two copies of the X chromosome with the defective gene is 50%, since daughters receive one copy of the X chromosome from both parents. Were this to occur with an X-linked dominant disorder, that daughter would likely experience a more severe form.

Some X-linked dominant conditions such as Aicardi syndrome are fatal to boys; therefore only girls with these conditions survive, or boys with Klinefelter's syndrome (and hence have more than one X chromosome).

A few scholars have suggested discontinuing the use of the terms dominant and recessive when referring to X-linked inheritance, stating that the highly variable penetrance of X-linked traits in females as a result of mechanisms such as skewed X-inactivation or somatic mosaicism is difficult to reconcile with standard definitions of dominance and recessiveness.

List of dominant X-linked diseases

See also

References

  1. Dobyns WB, Filauro A, Tomson BN, Chan AS, Ho AW, Ting NT, Oosterwijk JC, Ober C (August 2004). "Inheritance of most X-linked traits is not dominant or recessive, just X-linked". American Journal of Medical Genetics. Part A. 129A (2): 136–43. doi:10.1002/ajmg.a.30123. PMID 15316978.
  2. Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Renieri A, et al. (October 2003). "X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a "European Community Alport Syndrome Concerted Action" study". Journal of the American Society of Nephrology. 14 (10): 2603–10. doi:10.1097/01.ASN.0000090034.71205.74. PMID 14514738.
  3. Ngan V (2005). "Incontinentia pigmenti". DermNet NZ.
  4. Incontinentia Pigmenti at eMedicine
  5. Dalal AB, Sarkar A, Priya TP, Nandineni MR (August 2010). "Giuffrè-Tsukahara syndrome: Evidence for X-linked dominant inheritance and review". American Journal of Medical Genetics. Part A. 152A (8): 2057–60. doi:10.1002/ajmg.a.33505. PMID 20635354.
  6. Seager MJ, Whatley SD, Anstey AV, Millard TP (January 2014). "X-linked dominant protoporphyria: a new porphyria". Clinical and Experimental Dermatology. 39 (1): 35–7. doi:10.1111/ced.12202. PMID 24131146.
X-linked disorders
X-linked recessive
Immune
Hematologic
Endocrine
Metabolic
Nervous system
Skin and related tissue
Neuromuscular
Urologic
Bone/tooth
No primary system
X-linked dominant
Category: