Misplaced Pages

Zinc stearate

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is the current revision of this page, as edited by Discospinster (talk | contribs) at 19:47, 13 May 2023 (Reverted edits by 2600:1002:B057:B7F3:703A:C73C:3C47:2240 (talk) to last version by Graeme Bartlett). The present address (URL) is a permanent link to this version.

Revision as of 19:47, 13 May 2023 by Discospinster (talk | contribs) (Reverted edits by 2600:1002:B057:B7F3:703A:C73C:3C47:2240 (talk) to last version by Graeme Bartlett)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Zinc stearate
Zinc stearate
Names
IUPAC name zinc octadecanoate
Other names zinc distearate
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.008.321 Edit this at Wikidata
EC Number
  • 209-151-9
PubChem CID
RTECS number
  • ZH5200000
UNII
UN number 3077
CompTox Dashboard (EPA)
InChI
  • InChI=1S/2C18H36O2.Zn/c2*1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20;/h2*2-17H2,1H3,(H,19,20);/q;;+2/p-2Key: XOOUIPVCVHRTMJ-UHFFFAOYSA-L
  • InChI=1/2C18H36O2.Zn/c2*1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20;/h2*2-17H2,1H3,(H,19,20);/q;;+2/p-2Key: XOOUIPVCVHRTMJ-NUQVWONBAX
SMILES
  • .C(=O)CCCCCCCCCCCCCCCCC.C(=O)CCCCCCCCCCCCCCCCC
Properties
Chemical formula C36H70O4Zn
Molar mass 632.33 g·mol
Appearance soft, white powder
Odor slight, characteristic
Density 1.095 g/cm, solid
Melting point 120 to 130 °C (248 to 266 °F; 393 to 403 K)
Boiling point decomposes
Solubility in water insoluble
Solubility in Ethanol insoluble
Solubility in ether insoluble
Solubility in benzene slightly soluble
Hazards
GHS labelling:
Pictograms GHS07: Exclamation markGHS09: Environmental hazard
Signal word Warning
Hazard statements H335, H400, H413
Precautionary statements P261, P271, P273, P304+P340, P312, P391, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1 2 0
Flash point 277 °C (531 °F; 550 K)
Autoignition
temperature
420 °C (788 °F; 693 K)
NIOSH (US health exposure limits):
PEL (Permissible) TWA 15 mg/m (total) TWA 5 mg/m (resp)
REL (Recommended) TWA 10 mg/m (total) TWA 5 mg/m (resp)
IDLH (Immediate danger) N.D.
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Zinc stearate is a "zinc soap" that is widely used industrially. In this context, soap is used in its formal sense, a metal salt of a fatty acid: in this case stearic acid. It is a white solid that repels water. It is insoluble in polar solvents such as alcohol and ether but soluble in aromatic hydrocarbons (e.g., benzene) and chlorinated hydrocarbons when heated. It is the most powerful mold release agent among all metal soaps. It contains no electrolyte and has a hydrophobic effect. Its main application areas are the plastics and rubber industry, where it is used as a releasing agent and lubricant which can be easily incorporated.

Zinc carboxylates, e.g. basic zinc acetate, adopt complex formulas, and are not simply dicarboxylates of zinc. Instead the formula for most zinc carboxylates is Zn4O(O2CR)6, consisting of a Zn4O core with carboxylate ligands spanning the edges.

Applications

It is widely used as a release agent for the production of many kinds of objects: rubber, polyurethane, polyester processing system, powder metallurgy. These applications exploit its "non-stick" properties. In cosmetics, zinc stearate is a lubricant and thickening agent used to improve texture.

It is an "activator" for accelerated rubber sulfur vulcanization. As discovered in the early days of vulcanization, zinc has a beneficial effect on the reaction of the sulfur with the polyolefin. The stearate is a form of zinc that is highly soluble in the nonpolar medium of the polyolefins.

Being lipophilic, it functions as a phase transfer catalyst for the saponification of fats.

Niche uses

It is a component of some paints, imparting gloss. As a chief ingredient in "fanning powder", it is used by magicians performing card manipulation to decrease the friction between playing cards.

References

  1. ^ NIOSH Pocket Guide to Chemical Hazards. "#0676". National Institute for Occupational Safety and Health (NIOSH).
  2. "ZINC stearate". pubchem.ncbi.nlm.nih.gov.
  3. ^ David J. Anneken, Sabine Both, Ralf Christoph, Georg Fieg, Udo Steinberner, Alfred Westfechtel "Fatty Acids" in Ullmann's Encyclopedia of Industrial Chemistry 2006, Wiley-VCH, Weinheim. doi:10.1002/14356007.a10_245.pub2
  4. "Zinc Stearate | Cosmetics Info". cosmeticsinfo.org. Archived from the original on 2013-09-06.
Salts and covalent derivatives of the stearate ion
HCH3(CH2)16CO2 He
LiCH3(CH2)16CO2 Be(CH3(CH2)16CO2)2 B(CH3(CH2)16CO2)3 C NH4CH3(CH2)16CO2, -O- F Ne
NaCH3(CH2)16CO2 Mg(CH3(CH2)16CO2)2 Al(CH3(CH2)16CO2)3 Si(CH3(CH2)16CO2)4 P(CH3(CH2)16CO2)3 S Cl Ar
KCH3(CH2)16CO2 Ca(CH3(CH2)16CO2)2 Sc(CH3(CH2)16CO2)3 Ti V Cr(CH3(CH2)16CO2)2 Mn Fe(CH3(CH2)16CO2)2
Fe(CH3(CH2)16CO2)3
Co(CH3(CH2)16CO2)2 Ni(CH3(CH2)16CO2)2 Cu(CH3(CH2)16CO2)2 Zn(CH3(CH2)16CO2)2 Ga(CH3(CH2)16CO2)3 Ge As(CH3(CH2)16CO2)3 Se Br Kr
RbCH3(CH2)16CO2 Sr(CH3(CH2)16CO2)2 Y(CH3(CH2)16CO2)3 Zr(CH3(CH2)16CO2)3 Nb Mo Tc Ru Rh Pd(CH3(CH2)16CO2)2 AgCH3(CH2)16CO2 Cd(CH3(CH2)16CO2)2 In(CH3(CH2)16CO2)3 Sn Sb(CH3(CH2)16CO2)3 Te I Xe
CsCH3(CH2)16CO2 Ba(CH3(CH2)16CO2)2 * Lu(CH3(CH2)16CO2)3 Hf Ta W Re Os Ir Pt AuCH3(CH2)16CO2 Hg2(CH3(CH2)16CO2)2,
Hg(CH3(CH2)16CO2)2
TlCH3(CH2)16CO2 Pb(CH3(CH2)16CO2)2 Bi(CH3(CH2)16CO2)3 Po At Rn
Fr Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* La(CH3(CH2)16CO2)3 Ce(CH3(CH2)16CO2)3 Pr Nd Pm Sm(CH3(CH2)16CO2)3 Eu(CH3(CH2)16CO2)3 Gd(CH3(CH2)16CO2)3 Tb Dy(CH3(CH2)16CO2)3 Ho(CH3(CH2)16CO2)3 Er Tm Yb(CH3(CH2)16CO2)3
** Ac(CH3(CH2)16CO2)3 Th(CH3(CH2)16CO2)4 Pa UO2(CH3(CH2)16CO2)2 Np Pu Am Cm Bk Cf Es Fm Md No
Categories: