This is the current revision of this page, as edited by Citation bot (talk | contribs) at 22:36, 18 July 2024 (Added doi-access. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Misplaced Pages:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 840/874). The present address (URL) is a permanent link to this version.
Revision as of 22:36, 18 July 2024 by Citation bot (talk | contribs) (Added doi-access. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Misplaced Pages:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 840/874)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)Names | |
---|---|
IUPAC name Titanium(II) oxide | |
Other names Titanium monoxide | |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
ECHA InfoCard | 100.032.020 |
PubChem CID | |
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | TiO |
Molar mass | 63.866 g/mol |
Appearance | bronze crystals |
Density | 4.95 g/cm |
Melting point | 1,750 °C (3,180 °F; 2,020 K) |
Structure | |
Crystal structure | cubic |
Hazards | |
Flash point | Non-flammable |
Related compounds | |
Related titanium oxides | Titanium(III) oxide Titanium(III,IV) oxide Titanium(IV) oxide |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Y verify (what is ?) Infobox references |
Titanium(II) oxide (TiO) is an inorganic chemical compound of titanium and oxygen. It can be prepared from titanium dioxide and titanium metal at 1500 °C. It is non-stoichiometric in a range TiO0.7 to TiO1.3 and this is caused by vacancies of either Ti or O in the defect rock salt structure. In pure TiO 15% of both Ti and O sites are vacant, as the vacancies allow metal-metal bonding between adjacent Ti centres. Careful annealing can cause ordering of the vacancies producing a monoclinic form which has 5 TiO units in the primitive cell that exhibits lower resistivity. A high temperature form with titanium atoms with trigonal prismatic coordination is also known. Acid solutions of TiO are stable for a short time then decompose to give hydrogen:
- 2 Ti(aq) + 2 H(aq) → 2 Ti(aq) + H2(g)
Gas-phase TiO shows strong bands in the optical spectra of cool (M-type) stars. In 2017, TiO was claimed to be detected in an exoplanet atmosphere for the first time; a result which is still debated in the literature. Additionally, evidence has been obtained for the presence of the diatomic molecule TiO in the interstellar medium.
References
- ^ Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.), Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, ISBN 0-12-352651-5
- Banus, M. D.; Reed, T. B.; Strauss, A. J. (1972-04-15). "Electrical and Magnetic Properties of TiO and VO". Physical Review B. 5 (8). American Physical Society (APS): 2775–2784. Bibcode:1972PhRvB...5.2775B. doi:10.1103/physrevb.5.2775. ISSN 0556-2805.
- Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
- Jorgensen, Uffe G. (April 1994). "Effects of TiO in stellar atmospheres". Astronomy and Astrophysics. 284 (1): 179–186. Bibcode:1994A&A...284..179J.
- "Spectral classification of late-type dwarfs".
- Sedaghati, Elyar; Boffin, Henri M.J.; MacDonald, Ryan J.; Gandhi, Siddharth; Madhusudhan, Nikku; Gibson, Neale P.; Oshagh, Mahmoudreza; Claret, Antonio; Rauer, Heike (14 September 2017). "Detection of titanium oxide in the atmosphere of a hot Jupiter". Nature. 549 (7671): 238–241. arXiv:1709.04118. Bibcode:2017Natur.549..238S. doi:10.1038/nature23651. PMID 28905896. S2CID 205259502.
- Espinoza, Nestor; et al. (January 2019). "ACCESS: A featureless optical transmission spectrum for WASP-19b from Magellan/IMACS". MNRAS. 482 (2): 2065–2087. arXiv:1807.10652. Bibcode:2019MNRAS.482.2065E. doi:10.1093/mnras/sty2691.
- Dyck, H. M.; Nordgren, Tyler E. (2002). "The Effect of TiO Absorption on Optical and Infrared Angular Diameters of Cool Stars". The Astronomical Journal. 124 (1). American Astronomical Society: 541–545. Bibcode:2002AJ....124..541D. doi:10.1086/341039. ISSN 0004-6256. S2CID 117642107.
Titanium compounds | |||||
---|---|---|---|---|---|
Titanium(II) |
| ||||
Titanium(III) |
| ||||
Titanium(IV) |
|