This is an old revision of this page, as edited by Ldm1954 (talk | contribs) at 14:47, 28 October 2024 (Expand the project list, maybe more needed). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 14:47, 28 October 2024 by Ldm1954 (talk | contribs) (Expand the project list, maybe more needed)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)This is the talk page for discussing improvements to the Thermodynamics article. This is not a forum for general discussion of the article's subject. |
|
Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL |
Archives: Index, 1, 2, 3Auto-archiving period: 3 months |
Thermodynamics was one of the Natural sciences good articles, but it has been removed from the list. There are suggestions below for improving the article to meet the good article criteria. Once these issues have been addressed, the article can be renominated. Editors may also seek a reassessment of the decision if they believe there was a mistake. | |||||||||||||
| |||||||||||||
Current status: Delisted good article |
This level-3 vital article is rated B-class on Misplaced Pages's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||||||||||||||||||||||
|
Archives |
|
This page has archives. Sections older than 90 days may be automatically archived by Lowercase sigmabot III when more than 5 sections are present. |
Hw problem-helping thread
I wanna establish a post where everyone can share with each other the problems of thermodynamics they are stuck in and get help. 103.152.34.131 (talk) 00:40, 10 October 2022 (UTC)
Limitations
The article should have a section about criticisms and limitations of the Theory. First, the Laws of Thermodynamics are the formal foundation of CLASSICAL Thermodynamics (CT). Classical has been superseded by Statistical Thermodynamics (and quantum mechanics) in our understanding of the real world. (Which isn't to say that Classical has no utility.) Second, CT is, for the most part, useful for near-equilibrium systems. Third, perfect thermal equilibrium can not be obtained (at least, not locally). Fourth, CT doesn't deal with rates of change and (for the most part) time. Since both rates of change and time are of *Fundamental* importance in our understanding of, and descriptions of, the world, CT is, at best, a useful approximation only for certain limited situations. The article claims CT is "critical" to economics, which is laughable - so is gravity, with this thinking. (Granted, CT is useful in describing energy efficiencies, which has clear economic use.) The article mentions both equilibrium and absolute zero - but neither are "real" (obtainable) states. The article claims entropy is minimal at 0K, but this has two problems: a) 0k is unobtainable and b) it isn't the case that as 0K is approached that entropy necessarily decreases (as is implied) - except in the (unobtainable (arguably)) limit of infinite time. The Zeroth Law, as given here, has obviously been taken from some "formal" (in the mathematical/logical meaning) system. If A=B and B=C then A=C does NOT necessarily apply to the operands of > or <. Nor do I agree that the 0th Law stated here is correct. I prefer the 0th law to be something like 'For any separate macroscopic system or object, a property exists called Temperature which will, absent perturbations, become uniform with heat energy flowing from higher temperature regions to lower.' It should be mentioned that neutrinos, for example, can't be kept out of any so-called "closed" or "isolated" system (there are ~10^7 per cm^2 per second at Earth's surface). Gravity has a significant (for some systems) gradient and can't be shielded. Black body radiation can't be eliminated. (Meaning there are no true "isolated" systems). And then there's Dark Matter and Dark Energy. Suffice to say that these can be ignored for most applications of CT. I believe that Temperature, Energy and Entropy are 'elementary' concepts in CT. That is, they can't be defined *in* CT, but must be taken as given. Anyway, these are some, but by no means all, of the limitations of CT. I think it would be useful to have a section discussing them.40.142.183.146 (talk) 11:29, 12 August 2023 (UTC)
Need an article on Thermodynamics of nanostructures?
With care, I think something could/should be written (I am not volunteering). There was an article with that name which I have renamed to Thermal transport in nanostructures, I think an early editor thought that thermodynamics was short for "thermal dynamics". N.B., the transport page also needs work as it only goes up to 2005. Ldm1954 (talk) 14:03, 18 March 2024 (UTC)
"⧧" listed at Redirects for discussion
The redirect ⧧ has been listed at redirects for discussion to determine whether its use and function meets the redirect guidelines. Readers of this page are welcome to comment on this redirect at Misplaced Pages:Redirects for discussion/Log/2024 August 23 § ⧧ until a consensus is reached. 1234qwer1234qwer4 23:12, 23 August 2024 (UTC)
"Laws of work" listed at Redirects for discussion
The redirect Laws of work has been listed at redirects for discussion to determine whether its use and function meets the redirect guidelines. Readers of this page are welcome to comment on this redirect at Misplaced Pages:Redirects for discussion/Log/2024 August 23 § Laws of work until a consensus is reached. 1234qwer1234qwer4 23:15, 23 August 2024 (UTC)
Categories:- Delisted good articles
- B-Class level-3 vital articles
- Misplaced Pages level-3 vital articles in Physical sciences
- B-Class vital articles in Physical sciences
- B-Class Chemistry articles
- Top-importance Chemistry articles
- WikiProject Chemistry articles
- B-Class Engineering articles
- Unknown-importance Engineering articles
- WikiProject Engineering articles
- B-Class physics articles
- Top-importance physics articles
- B-Class physics articles of Top-importance