This is the current revision of this page, as edited by Smokefoot (talk | contribs) at 03:26, 6 November 2024 (→Occurrence: ''cis''-1,2-dihydrocatechol.). The present address (URL) is a permanent link to this version.
Revision as of 03:26, 6 November 2024 by Smokefoot (talk | contribs) (→Occurrence: ''cis''-1,2-dihydrocatechol.)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) Chemical compound
| |||
Names | |||
---|---|---|---|
Preferred IUPAC name Cyclohexa-1,3-diene | |||
Other names 1,3-Cyclohexadiene, 1,2-Dihydrobenzene, 1,3-CHD | |||
Identifiers | |||
CAS Number | |||
3D model (JSmol) | |||
Beilstein Reference | 506024 | ||
ChEBI | |||
ChemSpider | |||
ECHA InfoCard | 100.008.878 | ||
EC Number |
| ||
Gmelin Reference | 1657 | ||
PubChem CID | |||
RTECS number |
| ||
UNII | |||
UN number | 1993 | ||
CompTox Dashboard (EPA) | |||
InChI
| |||
SMILES
| |||
Properties | |||
Chemical formula | C6H8 | ||
Molar mass | 80.13 g/mol | ||
Appearance | Colorless liquid | ||
Density | 0.841 g/cm | ||
Melting point | −98 °C (−144 °F; 175 K) | ||
Boiling point | 80 °C (176 °F; 353 K) | ||
Magnetic susceptibility (χ) | -48.6·10 cm/mol | ||
Hazards | |||
GHS labelling: | |||
Pictograms | |||
Signal word | Danger | ||
Hazard statements | H225, H335 | ||
Precautionary statements | P210, P233, P240, P241, P242, P243, P261, P271, P280, P303+P361+P353, P304+P340, P312, P370+P378, P403+P233, P403+P235, P405, P501 | ||
Flash point | 26 °C (79 °F; 299 K) c.c. | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Y verify (what is ?) Infobox references |
Cyclohexa-1,3-diene is an organic compound with the formula (C2H4)(CH)4. It is a colorless, flammable liquid. Its refractive index is 1.475 (20 °C, D). It is one of two isomers of cyclohexadiene, the other being 1,4-cyclohexadiene.
Synthesis
Cyclohexadiene is prepared by the double dehydrobromination of 1,2-dibromocyclohexane:
- (CH2)4(CHBr)2 + 2 NaH → (CH2)2(CH)4 + 2 NaBr + 2 H2
Reactions
Useful reactions of this diene are cycloadditions, such as the Diels-Alder reaction.
Conversion of cyclohexa-1,3-diene to benzene + hydrogen is exothermic by about 25 kJ/mol in the gas phase.
- cyclohexane → cyclohexa-1,3-diene + 2 H2 (ΔH = +231.5 kJ/mol; endothermic)
- cyclohexane → benzene + 3 H2 (ΔH = +205 kJ/mol; endothermic)
- cyclohexa-1,3-diene → benzene + H2 (ΔH = -26.5 kJ/mol; exothermic)
Compared with its isomer cyclohexa-1,4-diene, cyclohexa-1,3-diene is about 1.6 kJ/mol more stable.
Cyclohexadiene and its derivatives form (diene)iron tricarbonyl complexes. Illustrative is , an orange liquid. This complex reacts with hydride-abstracting reagents to give the cyclohexadienyl derivative . Cyclohexadienes react with ruthenium trichloride to give (Benzene)ruthenium dichloride dimer.
Occurrence
Cyclohexa-1,3-diene itself is rare in nature, but the cyclohexa-1,3-diene motif is fairly common. One example is chorismic acid, an intermediate in the shikimic acid pathway. Of the several examples of the terpenoids and terpenes, a prominent example is phellandrene. An unusual derivative is cis-1,2-dihydrocatechol.
Coenzyme A-conjugated to the 2-position of cyclohexadiene-2-carboxylic acid is an intermediate in the biodegradation of aromatic carboxylic acids.
See also
References
- Schaefer, John P.; Endres, Leland (1967). "1,3-Cyclohexadiene". Organic Syntheses. 47: 31. doi:10.15227/orgsyn.047.0031.
- Sanjeeva Rao Guppi, George A. O'Doherty, "1,3-Cyclohexadiene" Encyclopedia of Reagents for Organic Synthesis, 2008 John Wiley & Sons. doi:10.1002/047084289X.rn00921
- US National Institute of Standards and Technology, NIST Chemistry WebBook 1,3-Cyclohexadiene Benzene
- J. Sherman The heats of hydrogenation of unsaturated hydrocarbons Archived 2011-07-14 at the Wayback Machine Journal of the American Oil Chemists' Society; Volume 16, Number 2 / February, 1939
- NIST Chemistry WebBook 1,4-Cyclohexadiene
- Pearson, Anthony J.; Sun, Huikai (2008). "Cyclohexadieneiron Tricarbonyl". E-EROS Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rn00791. ISBN 978-0471936237.
- Bennett, M. A.; Huang, T. N.; Matheson, T. W.; Smith, A. K. (1982). "16. (η6 -Hexamethylbenzene)Ruthenium Complexes". (η-Hexamethylbenzene)ruthenium Complexes. Inorganic Syntheses. Vol. 21. pp. 74–78. doi:10.1002/9780470132524.ch16. ISBN 9780470132524.
- Gribble, G.W. (1991). "Natural Products Containing a Cyclohexane, Cyclohexene, or Cyclohexadiene Subunit". Second Supplements to the 2nd Edition of Rodd's Chemistry of Carbon Compounds. pp. 375–445. doi:10.1016/B978-044453347-0.50066-5. ISBN 978-0-444-53347-0.
- Porter, A. W.; Young, L. Y. (2014). "Benzoyl-CoA, a Universal Biomarker for Anaerobic Degradation of Aromatic Compounds". Advances in Applied Microbiology. 88: 167–203. doi:10.1016/B978-0-12-800260-5.00005-X. ISBN 978-0-12-800260-5. PMID 24767428.
Cycloalkenes | |
---|---|
Alkenes | |
Dienes |
|
Trienes | |
Tetraenes |