Misplaced Pages

Glyceraldehyde

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is the current revision of this page, as edited by Arthurfragoso (talk | contribs) at 23:15, 16 December 2024 (Fixes images on dark mode). The present address (URL) is a permanent link to this version.

Revision as of 23:15, 16 December 2024 by Arthurfragoso (talk | contribs) (Fixes images on dark mode)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Glyceraldehyde
Glyceraldehyde
Glyceraldehyde
D-glyceraldehyde
D-glyceraldehyde
Names
IUPAC name Glyceraldehyde
Systematic IUPAC name 2,3-Dihydroxypropanal
Other names Glyceraldehyde
Glyceric aldehyde
Glyceral
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.000.264 Edit this at Wikidata
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C3H6O3/c4-1-3(6)2-5/h1,3,5-6H,2H2Key: MNQZXJOMYWMBOU-UHFFFAOYSA-N
  • InChI=1/C3H6O3/c4-1-3(6)2-5/h1,3,5-6H,2H2Key: MNQZXJOMYWMBOU-UHFFFAOYAU
SMILES
  • O=CC(O)CO
  • OCC(O)C=O
Properties
Chemical formula C3H6O3
Molar mass 90.078 g·mol
Density 1.455 g/cm
Melting point 145 °C (293 °F; 418 K)
Boiling point 140 to 150 °C (284 to 302 °F; 413 to 423 K) at 0.8 mmHg
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Glyceraldehyde (glyceral) is a triose monosaccharide with chemical formula C3H6O3. It is the simplest of all common aldoses. It is a sweet, colorless, crystalline solid that is an intermediate compound in carbohydrate metabolism. The word comes from combining glycerol and aldehyde, as glyceraldehyde is glycerol with one alcohol group oxidized to an aldehyde.

Structure

Glyceraldehyde has one chiral center and therefore exists as two different enantiomers with opposite optical rotation:

  • In the D/L nomenclature, either D from Latin Dexter meaning "right", or L from Latin Laevo meaning "left"
  • In the R/S nomenclature, either R from Latin Rectus meaning "right", or S from Latin Sinister meaning "left"
D-glyceraldehyde
(R)-glyceraldehyde
(+)-glyceraldehyde
L-glyceraldehyde
(S)-glyceraldehyde
(−)-glyceraldehyde
Fischer projection D-glyceraldehyde L-glyceraldehyde
Skeletal formula D-glyceraldehyde L-glyceraldehyde
Ball-and-stick model D-glyceraldehyde L-glyceraldehyde

While the optical rotation of glyceraldehyde is (+) for R and (−) for S, this is not true for all monosaccharides. The stereochemical configuration can only be determined from the chemical structure, whereas the optical rotation can only be determined empirically (by experiment).

It was by a lucky guess that the molecular D- geometry was assigned to (+)-glyceraldehyde in the late 19th century, as confirmed by X-ray crystallography in 1951.

Nomenclature

In the D/L system, glyceraldehyde is used as the configurational standard for carbohydrates. Monosaccharides with an absolute configuration identical to (R)-glyceraldehyde at the last stereocentre, for example C5 in glucose, are assigned the stereo-descriptor D-. Those similar to (S)-glyceraldehyde are assigned an L-.

Chemical synthesis

Glyceraldehyde can be prepared, along with dihydroxyacetone, by the mild oxidation of glycerol, for example with hydrogen peroxide and a ferrous salt as catalyst.

Its cyclohexylidene acetal can also be produced by oxidative cleavage of the bis(acetal) of mannitol.

Biochemistry

The enzyme glycerol dehydrogenase (NADP) has two substrates, glycerol and NADP, and 3 products, D-glyceraldehyde, NADPH and H+.

The interconversion of the phosphates of glyceraldehyde (glyceraldehyde 3-phosphate) and dihydroxyacetone (dihydroxyacetone phosphate), catalyzed by the enzyme triosephosphate isomerase, is an intermediate step in glycolysis.

See also

References

  1. Merck Index, 11th Edition, 4376
  2. Bijvoet, J. M.; Peerdeman, A. F.; Van Bommel, A. J. (1951). "Determination of the Absolute Configuration of Optically Active Compounds by Means of X-Rays". Nature. 168 (4268): 271–272. Bibcode:1951Natur.168..271B. doi:10.1038/168271a0.
  3. "22.03: The D and L Notation". Chemistry LibreTexts. 2015-03-19. Retrieved 2022-01-09.
  4. Wu, Gongde; Wang, Xiaoli; Jiang, Taineng; Lin, Qibo (2015-11-27). "Selective Oxidation of Glycerol with 3% H2O2 Catalyzed by LDH-Hosted Cr(III) Complex". Catalysts. 5 (4): 2039–2051. doi:10.3390/catal5042039. ISSN 2073-4344.
  5. Dhatrak, N. R.; Jagtap, T. N.; Shinde, A. B. (2022). "Preparation of 1,2:5,6-Di-O-cyclohexylidene-D-mannitol and 2,3-Cyclohexylidene-D-glyceraldehyde". Organic Syntheses. 99: 363–380. doi:10.15227/orgsyn.099.0363. S2CID 254320929.
  6. Kormann, Alfred W.; Hurst, Robert O.; Flynn, T.G. (1972). "Purification and properties of an NADP+-dependent glycerol dehydrogenase from rabbit skeletal muscle". Biochimica et Biophysica Acta (BBA) - Enzymology. 258 (1): 40–55. doi:10.1016/0005-2744(72)90965-5. PMID 4400494.
Types of carbohydrates
General
Geometry
Monosaccharides
Dioses
Trioses
Tetroses
Pentoses
Hexoses
Heptoses
Above 7
Multiple
Disaccharides
Trisaccharides
Tetrasaccharides
Other
oligosaccharides
Polysaccharides
Fructose and galactose metabolic intermediates
Fructose
Galactose
Mannose
Categories:
Glyceraldehyde Add topic